
Noname manuscript No.
(will be inserted by the editor)

Finding the right regression testing method: a
taxonomy-based approach

Maria Laura Brzezinski Meyer · Hélène
Waeselynck · Fernand Cuesta

Received: date / Accepted: date

Abstract With numerous regression testing (RT) methods available in the liter-
ature, it is challenging to choose the right one for a specific context. Practitioners
need support identifying suitable research. To this end, recent work has proposed a
taxonomy. By mapping both the RT problem and existing solutions onto the tax-
onomy, practitioners should be able to determine which solutions are best aligned
with their problem. Our work explores the practical relevance of this idea through
an industrial case study. The context is the development of R&D projects at a
major automotive company, in the domain of connected vehicles. We developed
an RT problem solving approach based on the taxonomy. Following the approach,
we characterized the RT problem, identified a set of 8 potentially relevant solutions
from a set of 52 papers, and empirically evaluated their suitability. Our approach
was successful, as we found effective RT methods among those selected using the
taxonomy. One method, in particular, demonstrated remarkable robustness across
various datasets, making it a strong recommendation for the industrial partner.
However, this success came at the cost of difficulties due to unclear taxonomy
elements, missing elements, and paper classification errors. We conclude that the
taxonomy has practical value but would have to mature for easier applicability.

Keywords Regression testing · Taxonomy · Industrial case study · Test case
prioritization · Test case selection

Maria Laura Brzezinski Meyer
Ampere Software Technology, Toulouse, France
LAAS-CNRS, Toulouse, France
E-mail: laurabrzmeyer@gmail.com

Hélène Waeselynck
LAAS-CNRS, Toulouse, France
E-mail: helene.waeselynck@laas.fr

Fernand Cuesta
Ampere Software Technology, Toulouse, France
E-mail: fernand.cuesta@ampere.cars



2 Maria Laura Brzezinski Meyer et al.

1 Introduction

Regression testing (RT) checks that the changes in the code did not introduce new
issues, that is, the software did not regress. Given the impracticality of re-running
all tests, there is a clear need for testing optimization. This is known as the RT
problem and has been an active field of research for decades.

The RT methods can be divided into three categories (Yoo and Harman, 2012):
Test Suite Minimization (TSM), Test Case Selection (TCS), and Regression Test
Prioritization (RTP). TSM aims to reduce the number of tests by removing re-
dundant ones. TCS addresses the dual problem of choosing which tests to run.
This selection is often related to the code changes: tests that cover the modified
parts of the code are selected. RTP neither removes nor selects tests, but rather
assigns them an order of execution seeking to maximize early fault exposure. An
RT strategy may hybridize TSM, TCS, and RTP. For example, a minimization
technique can be applied after the selection to further reduce the number of tests.
Alternatively, all tests can be prioritized but only the highest-priority ones are
selected. Conceptually, the three categories of methods are closely related. All of
them involve comparative characterization of the tests, based on which an optimal
decision has to be made (which tests to remove, retain, or execute first).

In the article titled “On the search for industry-relevant regression testing re-
search” (Ali et al., 2019), the authors noted that, despite the substantial body of
work on the RT problem, dissemination in the industry is limited. They identified
two main difficulties faced by practitioners. The first one stems from the discrep-
ancies in terminology between academia and industry, which makes it harder for
practitioners to search for methods in the literature. The second difficulty is as-
sessing the relevance of the methods. Research is usually conducted in a controlled
environment that differs from complex industrial scenarios.

In order to help practitioners to interpret, compare, and contrast the methods
in the literature, Ali et al. (2019) created a taxonomy. When both the RT problem
and existing solutions are mapped onto the taxonomy, practitioners may more eas-
ily determine which solutions are best aligned with their problem. The taxonomy
has three parts to capture the practitioners’ concerns: the industrial context, the
desired effects of RT methods, and the input information they need (e.g., code
changes, ...).

This paper builds on the work by Ali et al. (2019) to investigate a taxonomy-
based approach that searches for suitable RT solutions. The approach starts by a
characterization of the RT problem in terms of taxonomy elements. It then extracts
the applicable and relevant RT research from a set of papers, based on their map-
ping onto the taxonomy. Finally, it evaluates the candidate solutions on industrial
datasets and issue recommendations. We empirically study the application of the
approach to a real RT problem. The context is the development of R&D projects
at Renault for connected vehicles – specifically, in a Renault entity dedicated to
intelligent electric vehicles: Ampere Software Technology, founded in November
2023. We report on both the beneficial aspects and difficulties of applying the
approach in this context. Some difficulties stem from the taxonomy itself, due to
unclear taxonomy elements, missing ones, and paper classification errors. Others
are due to industrial constraints, which we had to accommodate in the evaluation
of the RT methods.



Finding the right regression testing method: a taxonomy-based approach 3

The entire study spanned two years. After the first year, we published interme-
diate results (Brzezinski Meyer et al., 2023), which included an analysis of the in-
dustrial problem, the selection of potentially relevant RT methods, and preliminary
considerations for their evaluation. At that point, we were unable to determine the
overall usefulness of the taxonomy-based approach, as it was unknown whether any
of the selected methods would successfully address the industrial problem. This
paper extends our previous work by incorporating the evaluation of the methods
conducted during the second year of the study. The process involved extracting
multiple datasets for different types of tests (manual or automated, exercising dif-
ferent systems embedded in the connected vehicle), creating an evaluation plan
that was compatible with industrial constraints, performing the evaluation (we
evaluated a total of 40 variants of the eight selected methods), and analyzing the
results. Through this process, we were able to confirm that the taxonomy-based
approach did, in fact, lead to successful problem-solving in the given context.
Among the methods selected by the approach, we found several that proved ef-
fective. Interestingly, in this industrial case, simple heuristics outperformed more
sophisticated methods, including those based on machine learning.

The paper provides an integrated account of all results obtained during the
two years. The main contributions of this work are:
– A taxonomy-based approach to identify which RT solutions from the literature

are best suited for a given industrial context;
– An empirical study of this approach, through the complete analysis of an in-

dustrial RT problem, from its characterization to solution recommendation;
– As part of this empirical study, a thorough evaluation of the suitability of the

candidate solutions for the industrial RT problem;
– Feedback on using the taxonomy to assist in a real RT problem;
– A GitHub repository that contains the implementation of all methods evalu-

ated, in order to enable reuse with other datasets.
The remainder of this paper is organized as follows. Section 2 presents the

background and context that motivated this work. Section 3 outlines the method-
ology we established to apply and assess the taxonomy. Section 4 characterizes the
industrial RT problem, focusing on its context and desired effects. In Section 5,
we analyze the feasibility of the existing methods from the literature, based on the
information items they require. Section 6 explores how the desired effects can be
measured within an industrial context. Section 7 details the candidate methods
selected for the experimental evaluation. In Section 8, we evaluate the retained
solutions in terms of their ability to achieve the desired effects. Section 9 discusses
threats to validity, and Section 10 concludes the paper.

2 Background and Related Work

Since the early papers in the 90s, regression testing has been widely studied. Many
surveys and systematic reviews have been published to keep pace with the evolving
research in the area. In Ali et al. (2019), the authors identified eleven reviews of
software RT literature between 2010 and 2017. New ones have been published
since that time, e.g., Khatibsyarbini et al. (2018), Lima and Vergilio (2020), Pan
et al. (2022), and Greca et al. (2023). The latter authors (Greca et al., 2023) noted
that literature reviews may quickly become outdated as new research emerges. To



4 Maria Laura Brzezinski Meyer et al.

remedy this problem, they have created an online live repository of RT studies,
which they intend to maintain and update annually.

The growing number of surveys and systematic reviews, as well as the con-
stant need for updates, reflects the substantial volume and continuous growth of
the regression testing literature. In this rich body of research, the proposed RT
methods are diverse. They differ in the (combination of) criteria to compare the
tests: code coverage, code change coverage, criticality of tested requirements, sim-
ilarity of tests, cost, historical effectiveness, ... The core RT algorithms are also
diverse, including predefined strategies, strategies optimized by a metaheuristic
search, as well as strategies based on machine learning.

With so many methods, it is difficult to know which ones to select and ap-
ply in a specific context. According to the principle of Evidence-Based Software
Engineering (EBSE) (Dyba et al., 2005), decision-making and practices should be
grounded in the best available scientific evidence. To this end, EBSE advocates
the use of systematic literature reviews (SLRs), which synthesize findings from
multiple empirical studies through a well-defined methodology. However, SLRs
may not be easily digestible for practitioners, and most address abstract research
questions rather than provide actionable guidance (Le Goues et al., 2018). To bet-
ter support decision-making, some authors have explored taxonomies to structure
and contextualize the presentation of research insights in a way that is meaningful
to practitioners. For instance, Forward and Lethbridge (2008) proposed a struc-
turation in terms of software types to which the findings are applicable. Şmite
et al. (2014) developed a taxonomy for research in global software engineering,
distinguishing various global sourcing situations that practitioners may encounter.
Closer to our focus, Engström et al. (2017) and Ali et al. (2019) introduced tax-
onomies for industry-relevant research in software testing in general, and software
regression testing in particular. These testing-related taxonomies integrate both
problem- and solution-oriented aspects. The intent is to facilitate connections be-
tween the two and make it easier for practitioners to find relevant research that
matches their specific needs.

In this work, we consider the taxonomy by Ali et al. (2019), which specifi-
cally targets problems and solutions in software regression testing. The taxonomy
focuses on industrial relevance and applicability. It is divided into three parts:
context, effect, and information. The purpose of the context part is to identify
the characteristics of an industrial environment that make regression testing chal-
lenging. Three context factors are identified: system-related (size, complexity and
type), process-related (testing process and test techniques), and people-related
(organizational and cognitive factors). The second part of the taxonomy is the
desired effect of a method, that is, the measurable improvement reported with its
implementation. The effects are divided into three categories: test coverage related,
test efficiency and effectiveness, and awareness. Together, the context and desired
effects characterize an RT problem. Then, the applicability of candidate solutions
is determined by the third part of the taxonomy. The solutions are characterized
by the information they utilize, like: development artifacts (from requirements to
binary code), information about test cases, test execution attributes, test report,
and issues revealed by tests. If some information item is not available in the in-
dustrial context, then the method is not feasible in this context. The information
part of the taxonomy is the most detailed one, representing 50 out of a total of 68
attributes for all parts (see these 50 attributes in Table 5).



Finding the right regression testing method: a taxonomy-based approach 5

The building of the taxonomy followed a principled approach, starting from a
systematic literature review and involving practitioners at several steps. The au-
thors also demonstrated the mapping of 38 RT papers to the taxonomy. However,
they did not demonstrate the application of their taxonomy to address RT prob-
lems in real-world scenarios. This paper provides such a real-world scenario. The
next section presents the methodology proposed to study the use of the taxonomy.

3 Methodology

This study adopts the point of view of an industrial company wishing to improve
its RT process. Given the large number of options available in the literature, we
consider that the company does not need to develop new RT methods. Rather,
the key issue is how to discern which of the available methods can be adapted to
the specific industrial context, taking into account current constraints and desired
objectives. Accordingly, we assume that the company seeks solutions from a set of
candidate research papers. Not all of them are relevant, and the company needs
to identify the methods that are worth experimenting with. The general question
of our study is whether the taxonomy is useful in helping to select a subset of
promising RT methods, among which at least one would prove to be an appropriate
solution to the industrial RT problem.

Our search for solutions considers a set of 52 candidate papers. We first took
the 38 RT papers already mapped to the taxonomy. They are displayed in Table 1,
where we retain the same ID as Ali et al. (2019) (from S1 to S38). These papers
describe methods that were identified as industry-relevant by the authors of the
taxonomy and their industrial partners.

Among the Si papers, we identified techniques based on execution history,
code coverage, requirement coverage, test case similarity and execution cost. But

Table 1: Selected papers on regression testing from Ali et al. (2019)

ID Ref

S1 Ekelund and Engström (2015)
S2 Saha et al. (2015)
S3 Marijan et al. (2013)
S4 Marijan (2015)
S5 Buchgeher et al. (2013)
S6 Skoglund and Runeson (2005)
S7 White et al. (2008)
S8 White and Robinson (2004)
S9 Zheng et al. (2006b)
S10 Zheng et al. (2007)
S11 Zheng (2005)
S12 Zheng et al. (2006a)
S13 Wang et al. (2013b)
S14 Wang et al. (2017)
S15 Wang et al. (2015)
S16 Wang et al. (2016)
S17 Wang et al. (2013a)
S18 Wang et al. (2014)
S19 Rogstad and Briand (2016)

ID Ref

S20 Rogstad et al. (2013)
S21 Krishnamoorthi and Mary (2009)
S22 Tahvili et al. (2016)
S23 Janjua (2015)
S24 Engström et al. (2010)
S25 Wikstrand et al. (2009)
S26 Engström et al. (2011)
S27 Vöst and Wagner (2016)
S28 Huang et al. (2009)
S29 Srivastava and Thiagarajan (2002)
S30 Hirzel and Klaeren (2016)
S31 Pasala and Bhowmick (2005)
S32 Herzig et al. (2015)
S33 Li and Boehm (2013)
S34 Anderson et al. (2014)
S35 Lochau et al. (2014)
S36 Devaki et al. (2013)
S37 Carlson et al. (2011)
S38 Gligoric et al. (2014)



6 Maria Laura Brzezinski Meyer et al.

Table 2: Added papers on ML-based methods

ID Ref ML

L1 Palma et al. (2018) SL
L2 Marijan et al. (2019) SL
L3 Mahdieh et al. (2020) SL
L4 Sharif et al. (2021) SL
L5 Yoo et al. (2009) UL
L6 Chen et al. (2011) UL
L7 Spieker et al. (2017) RL

ID Ref ML

L8 Shi et al. (2020) RL
L9 Lima and Vergilio (2022) RL
L10 Bertolino et al. (2020) SL+RL
L11 Busjaeger and Xie (2016) SL+NLP
L12 Lachmann et al. (2016) SL+NLP
L13 Medhat et al. (2020) SL+NLP
L14 Kandil et al. (2016) UL+NLP

none of these papers was published after 2016, and their set does not reflect the
growing interest in machine learning (ML)-based methods. So we felt the need
to include additional papers. We considered a recent literature review on ML-
based RT research by Pan et al. (2022). The review classifies 29 papers depending
on whether they use Supervised Learning (SL), Unsupervised Learning (UL),
Reinforcement Learning (RL), Natural Language Processing (NLP ), or a mix of
them. We extracted a subset of 12 papers such that each learning technique is
covered, as well as each mix of techniques. We also included two extra papers
(Marijan et al., 2019; Sharif et al., 2021) not cited in the review, but which we
had previously identified as ML-based work with an industrial focus. Table 2 lists
the resulting set of added papers (from L1 to L14). We had to map them to the
taxonomy, and did so with a systematic double check by different authors.

The real-world scenario is a major Renault project under development. We had
full access to its data. We also interacted with the teams working on the project all
along the two years of the study. In total, we engaged directly with approximately
20 engineers representing various roles, including test design, execution, and au-
tomation; debugging; build validation; test environment setup and maintenance;
test bench design and configuration; testing platform management; and project
data management.

The search for relevant methods followed four steps, shown in Figure 1. The
first three steps leverage the taxonomy in accordance with the role of the context,
effect and information described in Ali et al. (2019). Step 1 characterizes the
industrial RT problem in terms of a context and desired effects. Step 2 identifies the
feasible methods from the set of papers: the utilized information must correspond
to information items available in the project. Step 3 keeps the feasible methods
that address the desired effects, and determines how to measure these effects in
the industrial context. The last and fourth step does not use the taxonomy but
depends on the decisions taken at the previous steps. It consists in the empirical
evaluation of the candidate RT methods that have been retained, using the metrics
that have been retained.

Together, these four steps form a well-defined taxonomy-based approach to
address RT problems. Application to Renault’s real-life problem allows us to in-
vestigate whether the taxonomy fulfills the objectives stated by its authors, i.e.,
to help practitioners identify the RT methods best aligned with their needs. The
general question about the practical utility of the taxonomy is refined into four
research questions, one for each step of the approach:

– RQ1: Does the taxonomy help in describing a specific industrial RT problem?



Finding the right regression testing method: a taxonomy-based approach 7

Fig. 1: Taxonomy-based methodology structure with related research questions

– RQ2: Does the taxonomy help in identifying the feasible solutions in a specific
industrial context?

– RQ3: Does the taxonomy help in finding metrics to assess the solutions in a
specific industrial context?

– RQ4: Does the taxonomy-based approach prove to be effective in finding rele-
vant RT methods?

4 RT Problem Characterization

Step 1 of the approach characterizes the RT problem by an industrial context
and a set of desired improvements. This section presents them. We then provide
feedback about the use of the taxonomy for exposing the important characteristics
of the problem.

4.1 Description of the Context

The case study involves an R&D automotive project called Project A in the rest
of the paper. Figure 2 provides a high-level view of its architecture. It is multi-
system and composed of several Electronic Control Units (ECUs) connected by a
CAN bus (represented by purple lines in Figure 2). The two main components are
the in-vehicle infotainment system (IVI) and the communication one (IVC). The
infotainment constitutes the main point of contact with the driver and passenger
thanks to a screen and connected equipment. This system is the vehicle interface
for navigation, sound, image, communication, and user settings of the car. The
other system is in charge of the communication between on-board systems and
off-board services. A cloud platform is used to store vehicle information and to



8 Maria Laura Brzezinski Meyer et al.

Fig. 2: Global view of Project A

Table 3: Context of Project A using taxonomy of Ali et al. (2019)

Context Factor Project A

System-related
Size Large-scale

Complexity Multi-language
Type of system Automotive embedded system

Process-related
Testing process Weekly integration and issues allocation
Test technique Automated and manual

People-related
Cognitive factors Not relevant

Organizational factors Multiple companies

communicate with other services. An example of an off-board service considered
in Project A is a smartphone application for locking/unlocking the car’s doors.

The case study focuses on the integration tests of the on-board software. Table 3
summarizes the context factors based on the taxonomy. Project A is an automo-
tive embedded system, with a binary code size of around 6 GB. It comprises
two multi-language systems. The infotainment is mainly in C, C++, and Java,
while the communication is mainly in C. Regarding the testing process, a weekly
integration is done and the issues are allocated according to their origin (due to
the software under test, the test automation, or the environment). The testing
techniques are: automated testing (executed during the night) and manual test-
ing (executed during working hours). A relevant organizational factor is that
the system development involves different companies. There are suppliers for info-
tainment, others for communication and Renault integrates both parts. Tests are
carried out by Renault every week after the delivery of a new build.

The seven context factors of the taxonomy are high-level. The user is expected
to put a short note about why a given factor is challenging (e.g., “multi-language”
for the complexity factor in Table 3). We provide below a more extensive descrip-
tion of the context of Project A.

Tests are carried out on a test bench that reproduces the on-board architecture
and manages access to external services. When a new version of the binary code
is received from suppliers, it is flashed on the bench to update the ECUs. The
integration team tests the new infotainment code using a stable version of the
communication, and vice versa.

Both automated and manual tests have a priority (P1, P2, or P3) determined
by the importance of the functional feature checked. When the test verdict is
fail, the tester conducts an analysis to determine the origin of the problem: the
software under test (SUT ), the test automation, or a transient environment issue.
Accordingly, the issue report is forwarded to product or test automation managers,



Finding the right regression testing method: a taxonomy-based approach 9

who assign the issue a criticality (the impact it has on the customer) and a priority
(to determine the order in which bugs should be fixed).

Test automation issues account for about 30% of the fail verdicts of auto-
mated tests. This is not an unusual situation, and reflects the complexity of the
test environment for the embedded software. Other authors have studied automo-
tive projects using hardware-in-the-loop test benches (Jordan et al., 2022). They
reported from 74% up to 91% of failed executions due to automation issues (un-
reliable test infrastructures, incorrect tests). In Project A, the test automation
calls for a dedicated development and evolution process. All automated tests are
implemented using Robot Framework1, following a keyword-driven approach. The
main script of a test is concise, based on abstract keywords, but relies on many
lower-level resources (keyword libraries, code libraries, configuration files). All in
all, the automation code of a test typically represent tens of thousands lines of
code (> 10 KLOC), making it quite complex. A test is made available to the in-
tegration team only when it has demonstrated a stable correct behavior. If the
testing of the SUT reveals an unstable behavior or any other automation issue,
then the test becomes unavailable until it is repaired by the test automation team.
To ensure a stable behavior, the test design puts emphasis on making each test a
self-contained and standalone unit. Each test is responsible for its complete set-up
and clean-up, including hardware reboots, the establishment of a connection to
the cloud, and so on. In this way, a test starts and ends in a known state, and has
no side effect on other tests.

Manual tests are also defined as standalone units. The tester is free to perform
them in any order that matches the priority (P1 to P3, as previously explained). In
practice, the tester may happen to merge two tests of the same priority that require
a similar test bench configuration, in order to save the set-up time. However, this
is not always good practice. A test may need a known initial state like a “fresh
boot”. If the test is appended to another one without the reboot, its behavior is
less predictable. Spurious failures may occur. It is safer to systematically do the
set-up specified for the test.

The set-up and cleaning actions are important to achieve stable tests, but are
time-consuming. Due to them, the duration of each test – automated or manual –
is typically in tens of minutes (from 20 to 50 minutes). One must also add the time
to analyze the fail verdicts. On average, given the resources available to Project A,
less than 25% of the tests can run each week. During a week, the practice is to have
2 nights and a half for running the automated tests, and about 2 days and a half
for the manual ones. In the latter case, this is an estimate, because the execution
time of manual tests cannot be precisely measured, nor clearly separated from
the analysis time. When observing a fail verdict, the manual tester immediately
performs the analysis before moving on to the next test. The number of executed
tests thus depends on the fail verdicts of the week. The engineers estimate that,
on average, 50% of the working time is spent on running the manual tests and
50% on analyzing them.

At the beginning of each week, the integration teams decides which tests will
be executed. For manual tests, it is not uncommon that the low-priority ones end
up not being executed, due to lack of time. Moreover, some tests tend to be rarely

1 https://robotframework.org/



10 Maria Laura Brzezinski Meyer et al.

selected. As a result, some tests are not executed for months. It is, therefore,
desirable to improve the regression testing process.

4.2 Desired Effects

The taxonomy proposes three broad categories of improvements: in test coverage,
in efficiency and effectiveness, and in increasing awareness. For the engineers of
Project A, the focus is on efficiency and effectiveness. For this, the taxonomy has
several refined objectives, as shown in Table 4. We discuss below the ones that are
the most desirable for Project A.

Following discussions with engineers, the two main objectives are (i) to decrease
the time to find faults and (ii) to avoid tests that are never or rarely executed.
The sooner the faults are found, the earlier the analysis of these bugs and the
faster feedback to the system suppliers and test automation team. Moreover, tests
should not be left behind for a long period of time. Otherwise, regression problems
may remain unnoticed until late in the project. All in all, the test selection and
prioritization could be more efficient than it is currently: it would ideally execute
the failing tests first, at the very beginning of the week, and also ensure a cir-
culation of the tests across weeks, none of them being forgotten. In terms of the
taxonomy, the decreased time for fault detection clearly corresponds to the first
objective, while the circulation of the tests is not explicitly mentioned.

Some supplementary objectives are desired but assigned less importance in the
short term. For both manual and automated tests, a reduced testing time would
make the bench available for other projects. Ideally, the usage time of the bench
could go from two and a half days to just one day for manual testing, and from two
and a half nights to one night for automated testing. However, the mere reduction
in time would not be enough. It would be imperative to maintain the fault detection
capability.

To sum up, the short-term objectives revolve around a more efficient use of
the currently available testing time, while longer-term objectives would consider
reducing this time. Note that the solutions might be different for manual and
automated tests. For example, the decreased time for fault detection does not
have the same meaning if the analysis is done on the fly (manual tests) or after the
nightly execution (automated tests). For automated tests, a fine-grained ordering
may not be needed, provided that the failing tests occur on the first night.

Table 4: Desired effects for Project A using the taxonomy

Test coverage
Feature coverage
Input (Pairwise)

Efficiency
effectiveness

Reduction of test suite
Reduced testing time +
Improved precision

Decreased time for fault detection ++
Reduced need for ressources
Fault detection capability +
Severe fault detection
Reduced cost of failure

Awareness Transparency of testing decisions



Finding the right regression testing method: a taxonomy-based approach 11

4.3 Feedback on the Taxonomy (RQ1)

The most helpful part of the taxonomy concerned the desired effects, which allowed
the identification and prioritization of objectives. The context factors were deemed
too high level to fully characterize an industrial problem. However, they were found
relevant to guide the discussions with the engineers.

The review of desired effects revealed a missing one: the circulation of the
tests. The taxonomy does not include it. Still, at least two papers analyzed by the
authors of the taxonomy propose a method that ensures the circulation of the tests
(S26, S32). One of the ML-based papers we analyzed (L9) also does. But none of
them lets this appear as a measured effect. According to the methodology used to
build the taxonomy, the circulation of the tests would then not qualify as a desired
effect because “an effect has to be demonstrated as a measurement”. We could find
another paper in the literature (Erik Strandberg et al., 2017) that mentions the
circulation of tests, and that explicitly demonstrates this effect (along with other
ones). Forgotten tests are a recurring problem in many industrial settings, thus we
propose adding forgotten test avoidance to the taxonomy. Section 6 will further
discuss the evaluation of this effect.

RQ1 (aid in describing the problem): The context part is too high-
level but still relevant for guiding discussions with engineers. The effect part
proved helpful in capturing the industrial objectives. A missing effect is the
circulation of the tests.

5 Analysis of RT Methods Feasibility

Step 2 of the approach explores the feasibility of the methods proposed in the set
of 52 papers. A method is considered as technically feasible if it is based solely on
information items that are available in the industrial context. First, a taxonomy-
based analysis is done, which uses the items mentioned in the taxonomy. Both
the papers and Project A are mapped to the taxonomy, allowing a comparison of
the required and available items. It yields a classification into feasible and infeasi-
ble methods. Then, we assess the outcomes of the previous analysis by browsing
through the papers, and by manually determining whether each method is re-
ally (in)feasible in the context. The section ends with feedback on the use of the
taxonomy to analyze feasibility.

5.1 Taxonomy-Based Analysis of Feasibility

Table 5 shows the mapping of Project A and papers to the taxonomy. The first two
columns display the information items of the taxonomy. The third one indicates
which items are available for Project A. It can be compared with the fourth column
which lists the papers requiring an item. For example, looking at the first item: the
changes in requirements are not tracked in Project A, so that the method described
in S21 is not feasible. For Project A, a star is marked (X*) if the information is
indirectly available: it may be derived from other available data, or replaced by
an estimate.



12 Maria Laura Brzezinski Meyer et al.

Table 5: Information mapping for Project A and the set of 52 papers

Information Project A State of the Art Papers

Requirements

No of changes in a requirement S21
Fault impact X S21
Subjective implementation
complexity

X S21

Perceived completeness X S21
Perceived treaceability X S21
Customer assigned priority X S21, S33, L14

Design
artifacts

System models S13-S18, S27, S35
Code dependencies S19, S20, S37, L10

Source code

Code change /
Revision history

S1, S2, S5, S7,
S8, S24, S25, S38,
L1-L3, L10, L13

Source file S2, S7, S8, S30, S37, L11
No of Contributors S32

Intermediate
code

Class dependencies S6
Code changes
(method or class)

S2, S6, S28,
L1, L10, L11

Binary code
Revision history X S6, S29
Component changes S9-S12, S31
Binary files X S6, S9-S12, S23, S29

Test cases

Target variant S26
Type of test S26, L14
Model coverage S13-S20
Functionality coverage S3, S4
Static priority X S26
Age X S26, L11
Fault detection probability
(estimated)

X* S22, S29, S33, L13

Execution time
(estimated)

X
S22, S29, L4, L7,
L8, L10, L12, L13

Cost (estimated) X* S22, S33, L12
Link to requirements X S21, S22
Link to faults X S4, S21
Link to source code S6-S8, L2

Test
executions

Execution time X* S29, S32
Database-states S36
Invocation counts S28
Invocation chains S28, S31
Runtime component coverage S31
Method coverage S28, L1, L6

Code coverage
S5, S23, S29, S37, S38,
L2, L3, L5, L11, L13

Browser states S36
Class coverage S6, L10

Test reports

Execution time X* S3, S4, S13-S18, S28

Verdicts X
S1-S4, S13-S18, S26, S32,
S34, L1, L2, L4, L6-L11

Severity X S28, S33
Link to packages and
their revisions

S1

Link to branch S32
Build type S32
Link to failure S13-S18
Test session S13-S18, S26
Variant under test S32

Issues

Link to fixed file /
link to source code

S24, S25, L2, L3

Fix-time X* S32

Link to test case X
S24, S25, S37,
L3, L12- L14

Failure severity X S3, S4, L12, L14



Finding the right regression testing method: a taxonomy-based approach 13

For papers Si, the table simply reproduces the mapping done by the taxonomy
authors. For Project A and the papers Li, the mapping is ours. Obviously, it
depends on our understanding of the taxonomy. This is worth mentioning since
we experienced difficulties in interpreting some of the items. We report on these
difficulties below.

1) Test execution time appearing at different places. Ali et al. (2019) provided
the following explanation: as an attribute of a test case it is an estimation; as an
attribute of a test execution, it is measured at runtime; and as an attribute of the
test reports, it is further recorded and maintained. However, it was unclear to us
why and how to distinguish these cases. We had a look at papers exemplifying
them. For instance, the mapping of S29 has the execution time for both test cases
and test executions. But the paper merely mentions an option to take time into
consideration. There is no detail on time estimation, measurement, or recording.
As another example, we could not understand why time in S32 (test executions)
does not have the same mapping as in S3 and S15 (test reports).

We finally took the following mapping decisions. For Project A, we considered
all three execution time items as available. Strictly speaking, the measured exe-
cution time (in test executions or reports) is available for automated tests only.
We marked the information as indirectly available due to manual tests, for which
we only have an estimate. For the mapping of papers Li, we decided not to delve
into considerations of estimated, measured, or recorded values. If a paper used the
duration of tests, we mapped it to test case/execution time and considered the
information as available for Project A.

2) Items referring to faults, failures or issues. We feel that the terminology
would have deserved an explanation. Is a failure the same as a fail verdict? If
so, there is no added value of test reports/link to failures compared to test re-
ports/verdicts. For instance, we could not explain the different mappings of pa-
pers S4 (verdict only) and S18 (verdict + link to failures): both compute failure
rates in a test time window. Paper S4 is additionally mapped to test cases/link
to faults, but seems more concerned with failures (their frequency, their severity)
than faults (i.e., the investigated causes of failures). We observed that, in many
papers, “faults” and “failures” are used interchangeably. In Project A, we have
data for both. The investigation of faults is tracked by an issue management sys-
tem. Not all failures yield the opening of an issue, and there may be a single issue
opened for multiple failing tests.

We did the mapping as follows. We ignored the item test reports/link to failures.
Rather, we used test reports/verdicts to indicate that a method needs the recording
of the fail verdicts. Some methods do not consider the raw failure information,
requiring a traceability between the tests and the revealed faults. For them, we
decided not to distinguish whether the recording is in the direction from tests to
faults (test cases/link to faults), or from faults to tests (issues/link to test case).
Indeed, one item can be derived from the other by reversing the links. For papers
Li, we chose issues/link to test case to represent any relation between tests and
faults. This link direction is the most frequent one when using an issue management
system. For Project A, we explicitly marked both directions as available. We also
marked test cases/fault detection probability as indirectly available: estimates can
be derived from historical data.



14 Maria Laura Brzezinski Meyer et al.

3) Test session (in test reports). It seems obvious that any RT process involves
test sessions. However, only a few papers Si are mapped to this item, and we could
not understand what makes them different. We decided to ignore this item.

Subject to our interpretation, the taxonomy-based analysis retains 8 out of
the 52 papers. They are shown in the first row of Table 6. They use items like
the execution time of tests, their cost, their historical effectiveness (fail verdicts,
severity of the failures, issues found by the tests), the tested requirements, and
their priority. All these items are available in Project A. Most of the eliminated
papers require design or code artifacts that Project A does not have, as well
as coverage information. A few papers are eliminated due to other causes: they
consider variability data in multiple variants and code branches (S26, S32), or
need to monitor the number of changes in requirements (S21).

5.2 Manual Feasibility Analysis by Reading the Papers

To assess the aid provided by the taxonomy, we need some ground truth. For this,
we performed a manual labeling. We went through all the papers and labeled them
as feasible or not in the context of Project A. Two authors systematically labeled
each paper. First, one author read and mapped all the papers into the taxon-
omy. Then, a second author mapped the papers and compared their classification
with that of the first author. Finally, the authors discussed any discrepancies and
compared the three classifications to determine the final mapping.

As shown in Table 6, four papers were misclassified by the taxonomy. There
are two false positives (S33, L12) and two false negatives (S3, S26). The classifi-
cation errors are due to two causes: some papers are not correctly mapped to the
taxonomy, and the taxonomy misses important items. Differences are highlighted
in bold in Table 6.

Table 6: Technically feasible methods according to taxonomy and manual labeling

Labeling method Selected papers
Taxonomy-based labeling S22, S33, S34, L4, L7, L8, L9, L12

Manual labeling (ground truth) S3, S22, S26, S34, L4, L7, L8, L9

While reading the papers, we had several disagreements with the mapping
proposed for the papers Si by Ali et al. (2019). The disagreements are reported
in Table 7. They concern as much as 50% of papers Si. Most of the time, the
disagreement did not affect the final feasibility label. But it did in three cases:
S3, S26, and S33. Paper S3 was considered as the same approach as S4. Both
were eliminated due to the use of functionality coverage information. But only
S4, which extends S3, uses this information: S3 is actually feasible in the context
of Project A. Paper S26 was also wrongly eliminated. It is supposed to use test
cases/target variant. While variability is mentioned in the paper, the authors ex-
plain that they could not retrieve the information and present a method that does
not use it. The type of tests is also not used. For S33, the error is in the opposite
direction. The paper was retained but uses data items that were forgotten in the
mapping (functionality coverage and configuration variants), making it unfeasible.



Finding the right regression testing method: a taxonomy-based approach 15

Table 7: Disagreements with the mapping of papers by Ali et al. (2019)

ID Disagreements
S3 Same mapping as S4 (same authors), but actually uses less information

S9-S12 Needs the source code of user functions and the links between tests and code

S13-S18
Focuses on product lines, but no variability-related item is marked. All papers
have the same mapping while they consider different data subsets

S19-S20
Wrong mapping to design artifacts/code dependencies
(uses a black-box model)

S26 Wrong mapping to test cases/target variant (does not use variability data)
S27 Needs the model coverage of test cases

S29
Wrong mapping to test cases/fault detection probability
(the paper merely says that fault detection could be added)

S32 Needs the cost of test cases
S33 Needs the functionality coverage and target variant of test cases
S35 Needs the model coverage and target variant of test cases

The other cause of misclassification is when the taxonomy misses an item that
is important for feasibility. Since the taxonomy was built from a literature review,
it reflects the set of reviewed papers. As mentioned, this set had few methods based
on machine learning. By adding 14 papers to represent this category of methods,
we could get new information items. Such was the case for L12. It applies NLP
techniques and requires a natural language description of test cases. There is no
item for this in the taxonomy. The paper was labeled as feasible, but Project A
lacks the required information. A similar missing element is the natural language
description of issues, required by L14. Project A has this information, so the
missing element did not cause a misclassification of L14. By the way, L14 was
found unfeasible due to another reason (type of test). In other contexts where all
information items required by L14 would be available, with the exception of a
natural language description of issues, a misclassification would occur.

5.3 Feedback on the Taxonomy (RQ2)

The availability of information was found an effective criterion for determining
which methods are applicable in a given context. For Project A, only 8 out of the
52 papers fulfill this criterion (ground truth). Having read the papers, we are quite
confident that the methods are technically feasible in our context. However, their
identification via the taxonomy was hindered by understanding issues and paper
classification errors.

We had a hard time trying to understand the meaning of some information
items. What is the difference between execution time for test executions and for
reports? What do the many links between tests and failures (or faults, issues)
mean? What is a test session? We ended up reading numerous papers just to
determine how to interpret the taxonomy. We missed a user guide explaining the
rationale and meaning of the items.

While browsing through the papers already aligned to the taxonomy, we had
disagreements with as much as 50% of the mappings. They concern grouping pa-
pers from the same authors while there are differences in the approaches, forgetting
to mark items, or marking items that the authors mention but actually do not use.
For Project A, the inaccurate mappings caused three classification errors (S3, S26



16 Maria Laura Brzezinski Meyer et al.

misclassified as unfeasible, and S33 misclassified as feasible). The inaccuracies re-
ported in Table 7 could be fixed, but there is no maintained repository to update
the mappings for future usage. Other classification errors were due to missing el-
ements in the taxonomy. They concern natural language artifacts used by some
machine learning papers. The incompleteness of the taxonomy is unavoidable, as
new approaches are continuously added by researchers. Keeping the taxonomy in
line with the state of the art would again require a maintenance effort.

RQ2 (aid in selecting the feasible methods): The information items
are helpful to classify the papers, but difficult to interpret. In addition, sev-
eral papers are inaccurately mapped to the taxonomy. A documentation and
maintenance effort would be needed to make the taxonomy more usable.

6 Metrics to Assess RT Solutions

Step 3 of the approach focuses on the choice of metrics to assess the methods
retained after Step 2. Table 8 shows the alignment between the desired effects
(from Step 1) and those addressed by the feasible methods. The most desired
effects are in bold. The circulation of the tests is not in the taxonomy but added
for completeness.

Table 8: Addressed Effects

Addressed effects Methods
Reduced testing time S3, L4, L7, L8, L9
Decreased time for fault detection S3, S22, S26, L4,L7, L8, L9
Fault detection capability S26, S34
Circulation of the tests S26, L9

All the methods have at least one effect in common with Project A, and are
thus potentially relevant. But, obviously, their relevance cannot be decided based
on published results. They must be experimented in the industrial context. To
prepare for the implementation of experiments, we must gain closer insights into
the measurement of effects. For this purpose, we use the taxonomy mapping to
identify the papers (feasible or not) willing to achieve the same desired effect
as ours. Next, we examine their evaluation strategies to see if they are aligned
with our context. We then decide the metrics associated with each desired effects.
We also calculate the margin for improvement for each effect, by evaluating the
industrial practice as a baseline.

In practice, the decisions on the measurements of effects had to accommodate
industrial constraints. We first report on these constraints before presenting the
choice of metrics.

6.1 Constraints on the evaluation of methods

The evaluation had to be done without interfering with the testing process of
Project A. An online evaluation of the methods was therefore ruled out. The
evaluation had to be offline, relying on historical data collected during the project.



Finding the right regression testing method: a taxonomy-based approach 17

Table 9: Datasets information

Dataset Versions Test Cases Passed Failed Failed with Issues
Manu IVI 93 173 94% 6% 3%
Manu IVC 69 210 81% 19% 14%
Auto IVI 70 96 79% 21% 6%
Auto IVC 27 88 79% 20% 8%

We extracted four datasets of test executions from the project database, shown
in Table 9. They are referred to as Manu IVI, Manu IVC, Auto IVI, and Auto
IVC. They differ according to the type of execution (manual or automated), and
whether they target the infotainment (IVI) or communication (IVC) systems.

These datasets are incomplete, in the sense that we do not have the outcome
of the tests that were not run during a given validation cycle (i.e. during a given
week, when a new SUT version is received). The lack of information concerns both
quarantined tests and tests that were available but not selected for execution.

Data is also noisy. The measurement of execution time is imprecise for manual
tests. For automated tests, the recorded value does not include the set-up time.
The manual reporting of issues is imperfect. As can be seen in Table 9, many failed
verdicts are not linked to issues. For example, for Manu IVI, there are 6% of test
executions that fail, among which only half (3%) are linked with issues. The other
failures may be due to an external cause in the environment of the test (e.g., a
transient WiFi connection loss, a cloud service that is temporarily unavailable),
in which case no issue needs to be linked. But there is an unknown proportion of
cases in which the test operator should have opened an issue, or (perhaps, most
often) should have introduced a link to an already existing issue. The reporting is
worse for automated tests than for manual ones.

It was not possible to complete or repair the data. Indeed, this would be pro-
hibitively expensive. It would require extensive access to the test bench to run the
missing tests, as well as human resources to run the manual tests and analyze all
the failed executions.

Having to cope with incomplete and noisy data, we had to be very careful
about what could or could not be measured. We now explain the decisions taken
for each desired effect.

6.2 Decreased Time for Fault Detection

The decreased time for fault detection is measured by 19 papers. Among the used
metrics, one stands out and appears in 12 papers: Average Percentage of Faults
Detected (APFD) and its variant Normalized APFD (NAPFD). APFD was first
introduced by Rothermel et al. (1999) to measure how early an ordered test suite
reveals the faults. It requires that the faults are known, the tests that reveal each
fault are known, and the full suite is executed. If the faults and their revealing
tests are unknown, the metric may use the raw information of the failing tests.
The variant NAPFD (Qu et al., 2007) addresses cases where not all tests are run
and thus only a certain percentage of faults (or failures) are detected compared to
the full suite. However, it still requires that all faults (or failures) are known.



18 Maria Laura Brzezinski Meyer et al.

(a) Manual execution (b) Automated execution

Fig. 3: Evaluation of optimal and industrial orders of each dataset

We only have partial information about the test executions, so we have to
concentrate our evaluation on known outcomes. We consider that the full test
suite for a given cycle (i.e., a week) is the set of tests that ran during that cycle.
The methods under evaluation have to prioritize them, and we assess whether
the resulting orders enable faster detection than the historical execution order.
APFD is a suitable metric for comparing orders. We use it for manual tests. For
automated tests, we do not need such a fine measure of orders. As the results are
analyzed during working hours, the precise order of tests over the course of a night
is not important. We simply retain the percentage of detections occurring on the
first night. As the execution time of tests is imprecise, we take the approximation
that one night corresponds to 40% of the tests (total duration is about two nights
and a half).

Both metrics – APFD or First Night Detection Rate – can treat detection in
terms of faults revealed or fail verdicts observed. Neither of these options is ideal
for us. Dealing with faults means relying on the reporting of issues which, as we
explained earlier, is highly noisy in our datasets. Dealing with fail verdicts does not
take into account redundant detections (several tests fail due to the same issue)
and also gives false positives (failed executions due to environmental events rather
than to issues in the SUT or the tests). Since neither of these evaluation options
is fully reliable, we decided to implement both, in terms of faults and failures. In
the first case, we refer to the evaluation as being performed in an Issue scenario.
In the second one, the scenario is called Verdict. We require candidate methods to
be sufficiently robust to adapt to both scenarios.

Once the metrics have been chosen, it is worth determining whether the current
industrial practice can be improved. We compared two baselines. The first, called
Optimal, mimics a perfect prioritization method in which the detecting tests are
put first. The second, called Industrial, reflects the actual order in which the tests
were executed. Figure 3 shows the evaluation of these two baselines. The box plots
visualize the spread of APFD or First Night Detection Rate across all validation
cycles. As can be seen, the industrial order has a high variability in performance,
and most measured values are far away from the optimum. This clearly confirms
that there is room for improvement for the four datasets.



Finding the right regression testing method: a taxonomy-based approach 19

6.3 Circulation of the Tests

As regards the circulation of the tests, the taxonomy is of no help. Moreover, no
paper from the set measures this effect, although some do address it (S26, S32,
and L9). Outside the set of papers, we identified a relevant work (Erik Strandberg
et al., 2017) in which the authors check that no test is forgotten in two months of
execution. The evaluation of their RT method was done online, in a process where
the software changes every day and regression tests are carried out every night.
In S32, changes occur at a faster rate, and the RT method enforces each test to
execute at least every third day.

The previous approaches suggest measuring the interval of time between two
executions of a test, and checking whether it exceeds a given threshold. A global
metric could then be the percentage of forgotten tests identified in this way.

We kept the idea of measuring the percentage of forgotten tests, but had to
adapt it to Project A. First, a circulation threshold of only two months (not
mentioning three days) would be too demanding. In Project A, a validation cycle
lasts one week and has resources for less than 25% of the tests. Running all tests
just once would then take more than one month (> 4 cycles). Second, a test can be
quarantined for repair or even become obsolete. A long interval of time without any
execution may reflect the unavailability of the test rather than a poor circulation.
The determination of forgotten tests must, in some way, take into account how
often each test was available during the period of observation.

The solution we adopted mixes a fixed threshold and a variable time toler-
ance to account for availability. We consider a fixed threshold Nthres of 16 cycles
(approximately 4 months) below which a test does not need further examination.
After this time, we count the number of cycles na(tc) during which a test tc was
available but still not run. If na(tc) is greater than Nall, the number of cycles to
run all tests, we report tc as forgotten. This means that, after Nthres, the test
had enough opportunities to be executed but still was not, indicating that the
test has likely been overlooked or neglected in the test scheduling process. The
detection rule is formalized below, where gap(tc) represents a number of cycles
without execution of a test tc:

(gap(tc) > Nthres) and (na(tc) > Nall) → forgotten(tc) = True (1)

If a test is always available, the detection occurs when the gap reaches Nthres+
Nall cycles. The tolerance is higher and variable if the test is unavailable in the
cycles after Nthres. We checked whether, using this definition of forgotten tests, a
target of 0% would be achievable for Project A. For this, we simulated an optimal
method that selects a subset of available tests in descending order of last execution
date. The method represents the best that can be done to ensure test circulation,
given the allowed test size and the unavailability of some tests at the various cycles.
As shown in Table 10, the evaluation of the optimal method does give 0% forgotten
tests. We also evaluated the historical circulation of tests in the industrial datasets.
From the results reported in Table 10, there is room for improvement: we observed
12− 17% of forgotten tests.

To measure the improvement supplied by candidate RT methods, we had to
determine how to accommodate the constraint of an offline assessment with in-
complete data. Indeed, the only way to improve the test circulation is to allow



20 Maria Laura Brzezinski Meyer et al.

Table 10: Percentage of forgotten tests measured according to Rule 1

Dataset Optimal Industrial
Manu IVI 0% 12%
Manu IVC 0% 16%
Auto IVI 0% 17%
Auto IVC 0% 14%

the selection of forgotten tests, for which we do not have execution results. We
therefore considered augmenting the data with artificial results, which raised the
problem of the values to choose. Although the evaluation focuses on a circulation
objective rather than a detection one, the methods use past results as an input
to select tests, so that the chosen values may indirectly affect the percentage of
forgotten tests.

To address this problem, we took inspiration from Paper S24 (Engström et al.,
2010). The authors considered various assumptions about the unknown results and
performed a sensitivity analysis. The measured effect was not test circulation, but
the same principle can be reused for it. As in S24, we considered both extreme
and average cases: 1) all the unknown verdicts are pass; 2) they are all fail; 3) they
are fail with a probability equal to the historical failure rate at this cycle. The
evaluation then measures the percentage of forgotten tests in these three cases,
and observes whether the methods perform consistently well in all of them. In this
way, the test circulation can be judged as an inherent property of a method, rather
than an artifact of the data augmentation.

6.4 Long-Term Objectives

The long-term objectives in Project A are to reduce the testing time while main-
taining the fault detection capability. The testing time per week would ideally go
down to just one night for automated tests and one working day for manual tests.
Since we do not have a precise measurement of testing time, we approximate the
objective by one in terms of test size reduction: the number of tests should be 40%
of the historical number of tests run at a cycle.

The objective of reducing testing time is mentioned in numerous papers: S5−
S18, S23 − S25, S27, S28, S30 − S32, S35 − S37, L2, L4, L8 and L9. In most
of the cases there is a comparison between the execution time with and without
the selection, either in absolute numbers or in percentages. For Project A, we do
not need to measure this effect, as the desired time reduction is fixed. The key is
rather the measurement of the fault revealing power in the reduced time.

Fault detection capability is measured in S7, S8, S13 − S21, S24 − S26, S28,
S29, S34, L2, L6, L11 and L14. The metrics used in these papers can be divided
into four types: the absolute number of detected faults, the detection rate per
test case, the percentage of detected faults – which is the recall metric – and the
combination of recall and precision (i.e. F-Measure). We decided to use the recall.

Given our incomplete datasets, the evaluation must consider that the tests
available at a given cycle are the ones for which we have outcomes, i.e., which
were historically run at that cycle. Candidate methods are then judged on their



Finding the right regression testing method: a taxonomy-based approach 21

Table 11: Average detection rate at 40% of the original test size

Scenario Dataset Optimal Industrial

Verdict

Manu IVI 96% 41%
Manu IVC 98% 44%
Auto IVI 98% 54%
Auto IVC 99% 48%

Issue

Manu IVI 100% 35%
Manu IVC 100% 45%
Auto IVI 100% 56%
Auto IVC 100% 61%

ability to select a subset of these tests, which will keep a high percentage of all
historical detections.

Table 11 displays the results supplied by two baselines: the optimal method
where all failed tests (or the ones linked to issues) are run first, and the industrial
baseline corresponding to the historical execution order. The results of Optimal
show that keeping 100% of detections is infeasible in the Verdict scenario. For a
few cycles, the reduced test size is not sufficient to run all failed tests. Indeed,
in these cycles, some major regression issues caused numerous failures. We also
took a closer look at the other cycles to determine at which size it is feasible
to reach 100% of detections in the Verdict scenario. In all datasets, a number of
cycles have around 30% of failed tests. This shows just how tight the target size of
40% is. Missed detections will occur if only a small proportion of passing tests are
mistakenly assigned a high priority. The results from Industrial (see Table 11) are
clearly perfectible, but it seems unlikely that any of the candidate RT methods
will approach 100% detections with only 40% of the tests. We therefore decided
to evaluate the methods over a range of sizes from 40% to 90%.

It might appear that the metric at 40% is the same as the first night detection
rate, which we previously introduced for the objective of Decreased Time for Fault
Detection. Actually, their measurement processes differ. Previously, we wanted to
measure the effect of prioritization, i.e., all tests are run and we would like the
detecting ones to run first. Here, we are discussing the effect of a selection method,
that first prioritizes the tests and then runs only the highest-priority ones. Since a
subset of tests is run, some historical outcomes become unknown to the method. Its
prioritization decisions are taken with less information. If a method is not robust to
information loss, it can be very effective when used for prioritization, yet very poor
when used for selection. To evaluate the impact of information loss, we decided to
compare the percentage of detections at a size of 40% in the two cases: without
information loss (i.e., method used for prioritization only, as measured for the
previous objective), and with information loss (prioritization + selection of the
top 40% tests, as measured for this objective).

6.5 Feedback on the Taxonomy (RQ3)

The taxonomy relevantly pointed to papers that measure the desired effects (with
the exception of test circulation). We went through the papers to gain an overview
of alternative metrics. We selected the ones we wanted to use and evaluated the
margins for improvement in the industrial context.



22 Maria Laura Brzezinski Meyer et al.

In the taxonomy, the effect part is much less detailed than the information part,
which contains a fine-grained list of items utilized by the methods. An additional
level of detail would be useful for the effect part too. In particular, the effects could
be explicitly refined into metrics. As an example, the live repository by Greca et al.
(2023) does provide a mapping between papers and metrics, for a set of papers
published after 2016. Having this information in the taxonomy would have saved
us time in the identification of metrics, allowing us to concentrate on the design
of experiments.

The most important design decisions concerned how to deal with the indus-
trial constraints imposed on the evaluation process. A recap of these decisions is
provided at the beginning of the section presenting the experimental results (see
Table 13 in Section 8). To make decisions easier, it would have been relevant to
know which papers also had to evaluate their method offline with incomplete test
execution data. Unfortunately, the taxonomy does not provide elements to cate-
gorize the evaluation process used in each paper. We had to read all the papers to
identify that S24 faced constraints similar to our own. The authors proposed an
analysis of sensitivity to the unknown, which we reused when we augmented data
to evaluate test circulation.

RQ3 (aid in identifying metric to assess the solutions): The taxonomy
was only helpful in pointing to papers that measure the effects of interest. We
lacked a list of metrics associated with the effects, and items to characterize
the experimental settings in which the papers measured these metrics.

7 Description of RT Methods

This section presents the methods selected for evaluation, at the end of Steps 1-
3 of the approach. We retained four Si papers (from the papers studied by the
authors of the taxonomy) and four Li papers (added by us to represent ML-based
methods): S3, S22, S26, S34, L4, L7, L8, and L9. For each paper, we considered
variants of the proposed solution. Table 12 provides an overview of the 40 resulting
candidate methods.

Some of the variants come from the papers. The authors of S26 and the ones
of S34 studied alternative methods which we refer to as S26/34.1 and S26/34.2.
Additionally, the authors of S34 had variants to limit the number of historical
data: Win means a limited history (within a time window) and Full is with the
full history. The variants of methods L7, L8 and L9 correspond to the different
configurations explored in the respective articles. They differ in the type of agents
or policies employed and in the way the algorithms are rewarded.

We created the other variants when we adapted the methods to our constraints.
Firstly, in our datasets, only a subset of available tests is executed at each cycle.
For some methods that require the last k outcomes of a test (S3 and L4), we
considered two cases: taking the outcomes of the last k executions of this test
(Case1), or taking the outcomes of the last k cycles and explicitly accounting for
unknown values (Case2). Secondly, our datasets lack precision in the duration of
test executions. So, some methods that require execution time (S3 and S22) are
also evaluated without this feature, resulting in the withT ime and withoutT ime
variants. Finally, the original S26 method uses a full history, and we introduced



Finding the right regression testing method: a taxonomy-based approach 23

Table 12: List of methods and their variants

ID Method
Variants (different configurations of the same method)

ID Name Description

S3 ROCKET

S3.1.1 Case1 withTime Case1 = last executions
Case2 = last cycles

withTime = execution time
withoutTime = no time

S3.1.2 Case1 withoutTime
S3.2.1 Case2 withTime
S3.2.2 Case2 withoutTime

S22 TOPSIS
S22.1 TOPSIS withTime withTime = execution time

withoutTime = no timeS22.2 TOPSIS withoutTime

S26 Faz/ExtFaz

S26.1.1 Faz Full Faz = Fazlalizadeh et al.
ExtFaz = Engström et al.

Full = all past data
Win = recent past data

S26.1.2 Faz Win
S26.2.1 ExtFaz Full
S26.2.2 ExtFaz Win

S34 MFF/ARM

S34.1.1 MFF Full Most Frequent Failed
Association Rule Mining

Full = all past data
Win = recent past data

S34.1.2 MFF Win
S34.2.1 ARM Full
S34.2.2 ARM Win

L4 DeepOrder
L4.1 Case1 Deep learning method

Case1/2 = last exec/cyclesL4.2 Case2

L7 RETECS

L7.1.1 Tb + FCount
Reinforcement learning

Agent + Reward
Agents:

Tb = tableau
NN = neural network

L7.1.2 Tb + TCFail
L7.1.3 Tb + TRR
L7.2.1 NN + FCount
L7.2.2 NN + TCFail
L7.2.3 NN + TRR

L8 RL

L8.1.1 Tb + RHE whole all Reinforcement learning
Agent + Reward

Agents:
Tb = tableau

NN = neural network
Weight functions:

RHE = relu | THE = tanh
Rewards:

whole = for all tests
part = for failed tests
all = using full data

four = using 4 last cycles

L8.1.2 Tb + RHE whole four
L8.1.3 Tb + RHE part all
L8.1.4 Tb + RHE part four
L8.1.5 Tb + THE whole four
L8.1.6 Tb + THE part four
L8.2.1 NN + RHE whole all
L8.2.2 NN + RHE whole four
L8.2.3 NN + RHE part all
L8.2.4 NN + RHE part four
L8.2.5 NN + THE whole four
L8.2.6 NN + THE part four

L9 COLEMAN

L9.1.1 ε-Greedy + RNFail Multi-Armed Bandit method
Policy + Reward

Policies:
ε-Greedy: Epsilon-Greedy

UCB: Upper Confidence Bound
FRR: Fitness-Rate-Rank

L9.1.2 ε-Greedy + TRR
L9.2.1 UCB + RNFail
L9.2.2 UCB + TRR
L9.3.1 FRRMAB + RNFail
L9.3.2 FRRMAB + TRR

a Win variant inspired by the one of the authors of S34 (history within a time
window). This variant limits the processing time and memory.

Implementing the methods required an effort because only 3 of the 8 articles
have an online repository. In addition, we had to fix a bug in one case and even-
tually chose to redevelop the code in another. We also had to adapt the data
preparation process to our datasets. The code for all variants, along with detailed
descriptions, are made available for reuse in a GitHub repository2. A shorter de-
scription is given below. As there are 8 papers to introduce, the overall content is
still long. Readers more interested in the evaluation results can jump directly to
Section 8 and return to some of the methods later.

2 https://github.com/laurabrzmeyer/papers-implementation



24 Maria Laura Brzezinski Meyer et al.

S3 and variants. The ROCKET method (S3) is implemented in an industrial
case study by Marijan et al. (2013). The inputs required in this approach are:
a set of test cases to be prioritized, the test verdicts (i.e., pass or fail) from
previous executions, the test execution time, and the budget time allotted for
testing. The priority is calculated based on the sum of past verdicts weighted
according to how recent the execution was (most recent, second most recent
and other). A failed execution increases the priority of a test, a passed execution
decreases it. In addition, test execution time is taken into account to break the
tie between tests with the same priority. Tests that take too long to run are
penalized over faster ones.
S3.1.1 implements this method. Variants S3.2.* calculate the priority with
higher weights on the two most recent cycles rather than the two most recent
executions. Unknown verdicts are given the neutral value zero (vs. -1 and 1 in
the known cases). Variants S3.*.2 use a random tie breaker rather than one
based on test execution time.

S22 and variants. The Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) was first introduced by Hwang and Yoon (1981). It is
a method for decision support when multiple conflicting criteria are present.
TOPSIS searches for the alternative with the smallest geometric distance from
the positive ideal solution (PIS) and the largest geometric distance from the
negative ideal solution (NIS). The alternatives are thus ranked by their degree
of similarity to PIS and dissimilarity to NIS. A combination of TOPSIS and
fuzzy principles is done by Tahvili et al. (2016), resulting in the FTOPSIS
method (S22). FTOPSIS is intended for cases where the input data are quali-
tative rather than quantitative, which justifies the fuzzy evaluation of criteria.
The criteria are: fault detection probability, time efficiency, cost, and require-
ment coverage. In our case, it is possible to quantify each criterion directly. So
we implemented TOPSIS rather than FTOPSIS. S22.1 gives equal weights
to all four criteria, while S22.2 is a timeless variant giving a weight of zero to
time efficiency.

S26 and variants. Engström et al. (2011) investigate a method developed by
Fazlalizadeh et al. (2009), calling it Faz (S26.1). This method uses three fea-
tures to prioritize a test: the test’s frequency of failure, the number of times
the test remained unexecuted, and the test’s previous priority. Each element is
assigned a weight. Engström et al. (2011) also extend Faz, creating the ExtFaz
method (S26.2). Two features are added: the test’s age (relative to the current
cycle) and the test’s static priority.

S34 and variants. A method based on the Most Frequent Failures is introduced
by Anderson et al. (2014), which we refer to as MFF (S34.1). In MFF, every
test case that has a failure rate greater than a threshold is tagged as a test that
will potentially fail again. The authors also present another method, which we
denote as ARM, i.e. Association Rule Mining (S34.2). This method runs a
set of initial tests (called “smoke” tests by the authors), some of them being
observed to fail. Then, ARM selects additional regression tests that are strongly
associated with those, in the sense that whenever the smoke test failed in the
past, then the other tests often failed as well. The selection is again threshold-
based. Both MFF and ARM are implemented in two variants depending on
the length of the history, which we note Win and Full.
We implemented the MFF and ARM variants without using thresholds. Hence,



Finding the right regression testing method: a taxonomy-based approach 25

we turned these selection methods into prioritization ones, tests being ranked
according to their failure rate (for MFF ) or association level (for ARM ). This
facilitated the comparison with other candidate methods.

L4 and variants. Sharif et al. (2021) train a deep learning model to predict
the priority of each test case. The code for this method is open source3. The
following features are used in the prediction: the three last execution status
of a test; the test execution duration; the absolute time when a test was last
run; the distance between the two most recent executions of a test; and the
number of times a test status has changed. During the training, the label is
the PriorityV alue previously calculated using the ROCKET method (S3).
We used its two variants Case1 and Case2 with time.

L7 and variants. Spieker et al. (2017) introduce RETECS, a prioritization me-
thod based on reinforcement learning. The code is available online4. RETECS
corresponds to a model-free method, where there is no initial concept of the dy-
namics of the environment. The authors propose two policy models: a tableau
representation (denoted Tb in Table 12), which consists of two tables to store
the number of times an action was chosen and the average reward received;
and an Artificial Neural Network (ANN), where the input is the current state
of the environment and the output is an action. Here, an action consists in
assigning a priority to a test. The priority can then be used for selection of
the top x% tests. Three reward functions can give feedback to the agents after
their actions. The first one aims to maximize the number of failed test cases
in the selection (Failure Count Reward, denoted FCount). The second one,
Test Case Failure Reward (TCFail), returns the verdicts of the selected test
cases as a reward. In both cases, we compute the reward under the assumption
of a selection of the top 40% tests. The third reward, Time-Ranked Reward
(TRR), considers the position of each test, penalizing passed tests that are
ranked ahead of failed ones. The variants combine each policy model with each
reward function.

L8 and variants. Shi et al. (2020) also used reinforcement learning. The authors
propose new reward functions, aiming to improve the Test Case Failure Reward
from RETECS. They use the same agents as L7 but the reward functions
are now the weighted sum of the previous scores of each test. The rewards
differ according to the weight function (relu or tanh) and the quantity of
past information used (all or last four cycles). Additionally, the method can
be configured to reward all tests (whole) or only those that fail (part). We
implemented the same subset of combinations as the ones considered by the
authors.

L9 and variants. Lima and Vergilio (2022) implemented a Multi-Armed Bandit
(MAB) algorithm to prioritize tests (L9). To balance between exploration and
exploitation, three policies are presented: ε-greedy, Upper Confidence Bound
(UCB), and Fitness-Rate-Rank Multi-Armed Bandit (FRRMAB). Two re-
ward functions are used. The first one – Reward Based on Failures (RNFail)
– is based on the result of the test, that is, 1 if the test fails and 0 otherwise.
The second is the Time-Ranked Reward (TRR, the same as described for L7)

3 https://github.com/T3AS/DeepOrder-ICSME21
4 https://bitbucket.org/HelgeS/retecs/src/master/



26 Maria Laura Brzezinski Meyer et al.

Table 13: Summary of the evaluation process

Desired effect

Decreased time for
fault detection

Circulation of the
tests

Reducing testing time
and keeping fault

detection capability

Datasets
The 4 original

datasets

The 4 datasets with
data augmentation
under 3 profiles

The 4 original datasets

Scenarios Verdict and Issue Verdict Verdict and Issue

Technique Prioritization Selection based on priority

Tests to be
prioritized at
each cycle

Tests executed in the
cycle historically

Tests available in the
cycle historically

Tests executed in the
cycle historically

Number of
tests after
selection

—
Same as historical
number of tests

executed in the cycle

40-90% of tests
executed in the cycle

historically

Evaluation
metric

APFD and % of
detections during the

1st night
% of forgotten tests

% of detections at a
given test size,
with/without

information loss

and it verifies the rank of failing tests. The algorithm is available online5. The
variants combine each policy with each reward function.

8 Evaluation of RT Methods

Step 4 of the approach evaluates the candidate methods using the metrics from
Step 3. Table 13 summarizes the decisions taken for the measurement of each
desired effect.

The evaluation procedure follows three loops: for 40 variants of methods (listed
in Table 12), 4 datasets (cf. Table 9), all cycles in each dataset. We repeat this
procedure 30 times to account for randomness. Besides, to evaluate the first and
third objectives, we use two evaluation scenarios: Verdict and Issue. We ignore a
few cycles that do not contain at least one fail verdict or one issue. The effectiveness
of a method at each cycle is then measured by the mean of the metric over the 30
repeated runs. For the second objective (test circulation), the metric is a global
measure for all cycles. We have data augmentation under three profiles and, for
each profile, report the average global metric over 30 runs.

8.1 Decreased Time for Fault Detection

The main effect expected when applying a test prioritization method is a reduction
in fault detection time. Let us recall that we measure this by APFD for manual
tests and % of detections during the first night for automated tests (see Table 13).

5 https://github.com/jacksonpradolima/coleman4hcs



Finding the right regression testing method: a taxonomy-based approach 27

We might adopt different RT solutions for manual and automated tests, but would
like the methods to be robust enough to adapt to both IVI and IVC tests, in both
the Verdict and Issue scenarios.

For each method, we obtain eight boxplots showing the distribution of mea-
sures across cycles in each of the following settings: (manual/automated) x (Ver-
dict/Issue) x (IVC/IVI). To identify the best and most robust methods, we derived
an aggregated score that characterize the interquartile range in each setting. The
score is the sum of the lower quartile (Q1), median (Q2), and upper quartile (Q3)
observed in one setting. The higher the score, the better, since we seek for high
values of the metrics in as many cycles as possible. We used this score to com-
pare the methods with the original industrial prioritization and with each other.
We extracted a short list of methods as follows. First, we required the candidate
methods to improve the Industrial baseline. Out of 40 variants, 26 have scores
that exceed the one of Industrial in all settings with manual tests, and 11 in all
settings with automated tests. Then, we applied a second filter to retain the most
effective from these subsets, based on their relative ranking by the score. For the
prioritization of manual tests, we required methods to be in the top 5 for at least
one of the four settings and in the top 10 for all of the four. This retained three
variants of S3, and one of S22, S34 and L9. For automated tests, we used only
the Top 5 requirement and retained four variants of S3, two of S26 and two of
L9. Figure 4 displays their boxplots, as well as the ones of Optimal and Industrial
baselines.

It is interesting to note that there are few machine learning-based variants
remaining in the short list. The methods based on simple predefined heuristics, like
the S3 variants, outperform them. As visualized by the boxplots, all the retained
methods succeed in shifting the metric distributions towards higher values, thus
improving the Industrial baseline. An improvement is supplied in diverse settings,
showing that the methods are versatile and can adapt to various types of data.

The methods that stand out are variants of S3 (ROCKET method). They
are remarkably effective and robust, being in the short list for both manual and
automated tests, while the other variants are more suited to one or the other type
of tests. In particular, Variant S3.1.2 is in the top 5 of all eight settings, even if
one considers the full set of 40 methods and not just the ones that pass the first
filter. S3.1.1 provides similar results, in the top 6 of all methods. They differ as
follows. S3.1.2 corresponds to a ROCKET variant without time. When tests have
the same priority based on their past results, there is a random tie breaker. In
contrast, S3.1.1 (variant with time) favors the tests with the shortest execution
time, in order to run as many tests as possible in a limited time. We observed very
similar results but, to be fair, the constraints we had did not allow us to evaluate
the prioritization in terms of time. Hence, we could not properly evaluate the
effect of the different tie breakers. All what we can say is that, in ROCKET, the
priority given by past results proves a very good criterion to order tests, without
prejudging the improvement that a time-based refinement might (or might not)
bring.

S3 was among the papers for which we reported a classification error at Step 2
of the approach. The authors of the taxonomy mapped S3 together with S4 be-
cause they are from the same group of researchers and S4 is just an extension
of S3. However, S4 uses information items that are not available in Project A. If
we had blindly accepted the mapping by Ali et al. (2019), we would have wrongly



28 Maria Laura Brzezinski Meyer et al.

(a) Manu IVI (b) Manu IVC

(c) Auto IVI (d) Auto IVC

Fig. 4: Spread of the values of the metrics (APFD or % of detections in the 1st night) across
all cycles

rejected S3. This would have deprived us of what turned out to be the most robust
solution to our prioritization problem.

8.2 Circulation of the Tests

In addition to reducing fault detection time, the aim is also to avoid forgetting
tests. A test is considered as forgotten if it is available but not executed for a long
period of time (see the precise definition in Section 6.3). Table 14 displays the



Finding the right regression testing method: a taxonomy-based approach 29

Table 14: Average percentage of forgotten tests in 30 runs. Each method is evaluated with
data augmentation for unknown verdicts: F = always fail, H = historical failure rate, P =
always pass

Manu IVI Manu IVC Auto IVI Auto IVC
Optimal 0%
Industrial 12.4% 16.6% 16.8% 13.9%

F 4.7% 28.1% 11.2% 34.9%
S3.1.1 H 22.6% 17.7% 14.2% 1.0%

P 22.5% 16.5% 19.1% 1.2%
F 3.9% 29% 10.4% 34.4%

S3.1.2 H 0.6% 3.3% 7.5% 0.7%
P 0.4% 0.8% 2.8% 0.2%
F 0% ⋆ 18.8% 9.0% 27.9%

S3.2.1
H, P 0% ⋆

S3.2.2
F 0% ⋆ 12.8% 6.9% 19.5%
H, P 0% ⋆
F 29.6% 40.9% 36.0% 36.0%

S22.1 H 29.9% 37.9% 24.2% 36.5%
P 30.2% 39.6% 25.8% 45.3%

S26.1.1 F, H, P 0% ⋆
S26.1.2 F, H, P 0% ⋆

F 0.7% 2.1% 0.4% 0.5%
S34.1.2 H 0.7% 1.8% 0.5% 0.1%

P 0.6% 1.6% 0.6% 0.3%
F 29.2% 31.1% 21.0% 37.5%

L9.2.1 H 7.4% 17.6% 12.2% 17.5%
P 4.4% 8.4% 0.1% 11.9%
F 25.7% 24.0% 25.6% 27.9%

L9.3.1 H 23.0% 23.5% 24.0% 18.0%
P 22.5% 25.1% 22.8% 17.4%
F 26.7% 23.0% 25.8% 26.3%

L9.3.2 H 26.4% 24.0% 25.8% 21.8%
P 26.5% 22.9% 25.8% 12.9%

⋆ No forgotten test In bold: Better than Industrial

percentage of forgotten tests supplied by the 11 methods that were in the short
list for the previous objective. The evaluation involved data augmentation under
three profiles.

Only two families of the selected methods deal explicitly with test circulation:
S26 and L9. We expected them to be the most effective in achieving this objective.
This was indeed the case for the S26 variants, but not for the L9 variants. In
S26, the priority of a test takes into consideration the number of times it has
remained unexecuted. This allowed the S26 variants not to forget any test, for
any dataset and regardless of the data augment profile. L9 uses a Multi-Armed
Bandit algorithm. The policies corresponding to the L9.2.∗ and L9.3.∗ variants
have an exploration factor that should aid in selecting new tests. However, it
seems that the balance between exploration and exploitation, while suitable for
early detection, did not allow for the circulation of tests.

S34.1.2 is unexpectedly the second best choice for test circulation. Unlike the
S26 variants, it does not reach zero forgotten tests, but their percentages re-
main consistently very low across all datasets and data augmentation profiles.
The method ranks tests based on their failure rate within a time window. Its cir-
culation results may be explained by the fact that, within the time window, most



30 Maria Laura Brzezinski Meyer et al.

tests are either not run or passed. They end up having the same priority, and the
random tie-breaker gives the forgotten tests a chance.

Tie-breakers also play a role in the circulation capability of S3 variants, with
variants of the form S3. ∗ .2 (random tie-breaker) tending to outperform their
counterpart S3.∗ .1 (tie-breaker based on execution time). But the most impactful
option concerns the interpretation of the “k last results” used to compute priority.
These can be k last executions (S3.1.∗) or k last cycles (S3.2.∗), the cycle variant
being better for test circulation. At each cycle, it distinguishes between tests that
are not run and those that are passed: an unknown historical verdict is then
penalized less than a pass verdict. All in all, combining the S3 options, the best
variant for circulation is the one with cycles and a random tie-breaker, i.e., S3.2.2.

S3.2.2 is worth discussing because it ensures 0% of forgotten tests, except under
the data augmentation profile where all unknown verdicts are treated as failures.
The circulation capability of the method is thus sensitive to the presence of many
failed tests. But, as also noted by Engström et al. (2010), this always–fail profile is
the most unrealistic one. For Project A, it would imply that the testers are grossly
mistaken in their selection of tests for the week. Since S3.2.2 can handle failure
rates close to historical values, we believe it should not be discarded.

In our opinion, S3.2.2 actually offers the best trade-off between the early de-
tection and circulation objectives. For early detection, it is a robust method with
performance only slightly inferior to that of the top methods S3.1.1 and S3.1.2.
For circulation, it makes all the difference: it ensures no forgotten tests if the failure
rates are not too high. If this assumption is considered to be a major risk for circu-
lation, then no S3 variant is suitable. One must accept having different solutions
for different types of tests, rather than an all-in-one solution. Our recommendation
would then be to use S34.1.2 for manual tests and S26.1.1 for automated tests.

8.3 Long-Term Objectives

The long term objective is to run fewer tests and still maintain a high percentage of
detections. The target reduction would be to run only 40% of the historical number
of tests per cycle, which approximates a reduction from 2.5 days/nights to 1. Our
analysis of the margin for improvement showed that the target is challenging (see
Section 6.4). Missing no detections would mean that the methods put few useless
tests in their top 40% selection.

Figure 5 plots the average detection rate as a function of the percentage of
tests selected. The evaluation focuses on methods that were in the short list for
early detection, and that improved the circulation of tests under two of the data
augmentation profiles (always–pass and historical failure rate). For manual tests,
this leaves: S3.1.2, S3.2.2, and S34.1.2. For automated tests, the methods are:
S3.1.2, S3.2.1, S3.2.2, S26.1.1 and S26.1.2.

The trends observed in Figure 5 confirm the difficulty of maintaining a high
percentage of detections when only 40% of the tests are run. Even the best methods
may provide less than 70% of detections in some settings. In the worst case, a
method is not better than random selection. This is observed for SS34.1.2 in the
Manu IVI/IVC Verdict settings: selecting 40% of the tests yields an average of
40% detections. Given these results, less ambitious targets, such as running 60%
or even 80% of the tests would seem more realistic. An effective method such as



Finding the right regression testing method: a taxonomy-based approach 31

Fig. 5: Average detection rate as a function of the percentage of tests selected (across all
cycles, 30 repeated runs)

S3.1.2 would achieve 80% or 90% of detections at these sizes in all settings. Note,
however, that these figures are for scenarios where the selection is from the set
of tests that have been run historically. We do not know what the figures would
be if the selection was from the set of all historically available tests. But it seems
unlikely that the 40% target would be much less challenging in the latter case.

When the test size is reduced, RT methods have to deal with more unknowns.
To study this effect, we zoom on the 40% size and compare the spread of the
detection rates for two usages of the methods: for prioritization only or for priority-
based selection. The first usage, for prioritization, is the baseline. The complete
set of ordered tests is executed and information about their outcomes is made
available for future decisions. The second one, prioritization followed by selection,
corresponds to what we are studying here. Only a subset of tests is run, the top
40%, so the outcomes of the remaining 60% are unknown to the methods. By
contrasting the detection rates at 40% for prioritization or selection, it is possible
to study the robustness of the methods to information loss.

For manual tests (see Figure 6), the most severely impacted method is S34.1.2.
Its prioritization algorithm simply ranks tests according to their failure rate over
the last 10 cycles. When too many test outcomes are unknown, the method tends
to become random, as already noted. The S3 variants are more robust, although
also impacted. For automated tests (see Figure 7), we observe that the S3 and
S26 variants are surprisingly unaffected in one of the settings (Auto IVC Issue),
but can be severely affected in others (see, e.g., the results of S3.2.1 in Auto IVI
Issue). S3.1.2 appears to be the most robust across the four settings.



32 Maria Laura Brzezinski Meyer et al.

(a) Manu IVI + Verdict (b) Manu IVC + Verdict

(c) Manu IVI + Issue (d) Manu IVC + Issue

Fig. 6: Impact of information loss on the detection at a size of 40% and for manual tests.
Prioritization: no information loss. Selection: the unexecuted tests have unknown outcomes

(a) Auto IVI + Verdict (b) Auto IVC + Verdict

(c) Auto IVI + Issue (d) Auto IVC + Issue

Fig. 7: Impact of information loss on the detection at a size of 40% and for automated tests.
Prioritization: no information loss. Selection: the unexecuted tests have unknown outcomes



Finding the right regression testing method: a taxonomy-based approach 33

In conclusion, S3.1.2 was a very good choice for prioritization only (Objec-
tive 1), and remains a good choice for priority-based test selection. However, the
reduction in test size should probably be much less drastic than originally con-
sidered if high detection power is to be maintained. An online evaluation of the
method is strongly recommended before making a final decision.

8.4 Feedback on the Taxonomy-based Approach (RQ4)

In discussing feedback, we need to distinguish between the principle of the ap-
proach, and its implementation with the current version of the taxonomy.

The taxonomy captures relevant domain-specific knowledge about RT problems
and solutions, which the approach uses in its steps to define the problem, identify
the feasible solutions and develop an evaluation plan. For the case study presented
in this paper, the approach delivered on its promise. It enabled us to identify a
subset of RT methods (from 8 papers out of 52), among which some proved to be
suitable for Project A. The ROCKET method (S3) was found to be particularly
commendable, since it can adapt to the different systems developed in Project A
(IVI, IVC), the different types of tests (manual, automated), and the different
types of detections (in terms of verdicts or issues).

While the principle of the taxonomy-based approach proved to be successful,
its implementation faced many difficulties. The identification of feasible solutions
was hampered by errors in the mappings of papers, and by missing or unclear
elements in the information part of the taxonomy. Most notably, the errors would
have excluded S3 as infeasible if we had not re-checked all the mappings.

RQ4 (efficiency in finding solutions): The taxonomy-based approach was
successful in finding solutions for Project A, but at the cost of fixing errors.
The taxonomy would have to mature.

9 Threats to Validity

A threat to internal validity concerns the understanding of the industrial RT prob-
lem. It was addressed by several meetings as well as direct discussions with en-
gineers. Besides, we could consolidate our understanding by consulting the data
of Project A, which was made fully available to us. At Step 2 of the approach,
there was the threat induced by our subjective interpretation of the taxonomy el-
ements. We mapped 14 new papers to the taxonomy. To mitigate the introduction
of a personal bias in the process, we systematically double-checked the mapping.
Moreover, we explicitly reported the difficulties we encountered and explained the
related mapping decisions. We also systematically double-checked the disagree-
ments we had on the mapping of the original set of papers. The choice of articles
to represent ML-based methods is another threat. We made sure that diverse
categories of methods were included (supervised learning, unsupervised learning,
reinforcement learning, and natural language processing). But, like in the original
work to build the taxonomy, there is no claim for completeness. In particular, the
information part of the taxonomy may have more missing elements than the ones
we identified.



34 Maria Laura Brzezinski Meyer et al.

Implementing the methods proposed in the literature also poses a threat to
internal validity. Since most of the papers did not provide source codes, the de-
velopment of the algorithms relied on our interpretation. Furthermore, the three
codes provided by the authors had to be changed, either to fix them or to adapt
them to our data and our context. Whenever we had doubts about the supplied
code or about how to implement a method, we contacted the authors. However,
we did not always get an answer. Our code is made openly available for inspection
by others.

The evaluation had to be performed on incomplete historical data. Obviously,
this is a major threat to internal validity, since the selection capabilities of the
methods could not be evaluated for tests that had not been run historically. There
was no means to remove this threat. It arises in any industrial context where
running the full test suite for every software release is impractical.

Moreover, we had to perform data augmentation in order to evaluate the ob-
jective of test circulation. This introduces another threat to validity. To mitigate
this threat, we included three data augmentation profiles. In this way, consistent
performance across profiles can support that test circulation is a property of the
method itself, not an artifact of augmentation.

Given the threats posed by the evaluation on historical data, the conclusions
delivered to Renault included a strong warning that the methods distinguished
by our study (S3.1.2 for detection purposes, S3.2.2 for a trade-off between early
detection and circulation) should now be evaluated online.

Finally, applying the taxonomy to a specific industrial context could threaten
the external validity of this study. While the taxonomy-based approach success-
fully identified effective methods in the context under study, this outcome might
not be achieved in some other industrial contexts. This threat is common to any
in-depth industrial study. As regards the difficulties reported in the use of the tax-
onomy, they do not appear to be specific to Project A. Additionally, the four-step
methodology we proposed is generic and broadly applicable.

10 Conclusion

This empirical study contributes to a line of research on how to assess industrial
relevance and applicability of RT methods. It presents a real-world scenario in
which practitioners search for solutions to their specific problems. The premise
of our work is that, given the large body of research proposed so far, effective
methods likely exist for many industrial RT problems, but practitioners need help
to find them. The taxonomy proposed by Ali et al. (2019) serves as an alignment
between the numerous published methods and the industrial problem.

The taxonomy introduces a decomposition into context, effects, and informa-
tion factors. They capture different aspects to consider, which we have integrated
into a four-step approach to tackle a real-world scenario. Step 1 is the problem
characterization, independently from any solution. Step 2 analyzes the feasibility
of the solutions based on the alignment between the required and available infor-
mation items. Step 3 checks the alignment between the desired effects of solutions
and the effects addressed by the methods. In this step, we also develop an eval-
uation plan for each desired effect and study the room for improvement. Step 4



Finding the right regression testing method: a taxonomy-based approach 35

involves the implementation and evaluation of the candidate methods according
to the plan.

Applied to Project A, the approach was successful in identifying effective RT
methods. This positive outcome provides support to the premise of our work (and
of the taxonomy) that industry-relevant challenges may currently lie more in the
search for already existing methods than in the development of new solutions. In-
terestingly, the method that stands out in this case study, ROCKET, corresponds
to a simple heuristic introduced more than ten years ago (Marijan et al., 2013). It
demonstrated remarkable robustness across various datasets, making it a strong
recommendation for the industrial partner. For Project A, it outperforms more
recent and more sophisticated methods based on machine learning.

While the principle of considering context, effects and information factors
proved successful in our approach, the low-level content of the taxonomy was
not as useful as it could have been.

Regarding the information part, the use of the taxonomy was hindered by
hard-to-interpret elements, missing elements, and errors in the classification of
candidate methods. The classification errors would have eliminated the method
that we eventually recommend for Project A. Our experience suggests several
potential improvements to the taxonomy, such as simplifying items related to test
execution time, merging two attributes of test reports – verdicts and link to failure)
– that appear to be essentially the same, and adding attributes for methods using
project artifacts in natural language.

The effect part was helpful in characterizing the problem at a high level, but
not so helpful in deciding how to measure the desired effects. We had to go through
all the papers mapped to an effect just to get an overview of the metrics used in
practice. The taxonomy also did not aid in identifying the evaluation constraints
occurring in each paper, e.g., whether the evaluation was done online or offline,
or whether all test outcomes were known or not. We found that such constraints
are very important when preparing an evaluation plan. This suggests that the
effect part of the taxonomy should be refined to a level of detail comparable to the
information part, incorporating attributes that capture both evaluation metrics
and relevant constraints.

Our experience thus shows that the taxonomy has practical value but needs
improvement. The version published in Ali et al. (2019) is a relevant contribution
to RT problem solving but may not be considered as a finished product. A means
to manage its improvement would be to deploy and maintain a public repository, in
the spirit of the live literature review created by Greca et al. (2023). Users would
find updated versions of the taxonomy, a documentation, a database of papers
mapped to the taxonomy, and could contribute by providing feedback.

Acknowledgements The authors would like to thank the Ampere Software Technology
teams working on Project A. Their help was crucial throughout this study. Several researchers
kindly answered questions about the RT methods they have developed: Jeffrey Anderson (S34),
Aizaz Sharif (L4), Helge Spieker (L7), Jackson Antonio do Prado Lima and Silvia Regina
Vergilio (L9). Any remaining misunderstandings would be our fault, not theirs.



36 Maria Laura Brzezinski Meyer et al.

Declarations

Funding: This work has been supported in part by the French National Associ-
ation of Research and Technology (ANRT) with a CIFRE fellowship granted to
Maria Laura Brzezinski Meyer.

Ethical Approval: not applicable.

Informed Consent: not applicable.

Author Contributions:

– Maria Laura Brzezinski Meyer : Conceptualization, Data Curation, Formal
analysis, Investigation, Methodology, Software, Visualization, Writing Origi-
nal Draft, Writing Review & Editing;

– Hélène Waeselynck : Conceptualization, Formal Analysis, Funding Acquisition,
Investigation, Methodology, Supervision, Writing Original Draft, Writing Re-
view & Editing;

– Fernand Cuesta: Conceptualization, Funding Acquisition, Investigation, Re-
sources, Validation, Writing Review & Editing.

Data Availability Statements: The datasets used in this study are from Ampere
Software Technology. The authors are not allowed to make them publicly avail-
able. However, the code of the methods analyzed is provided in a repository at:
https://github.com/laurabrzmeyer/papers-implementation. The code for all exper-
iments and assessments reported in this study is available upon request.

Conflict of Interest: The authors declare that they have no conflict of interest.

Clinical Trial Number: not applicable.

References

Ali NB, Engström E, Taromirad M, Mousavi MR, Minhas NM, Helgesson D, Kunze
S, Varshosaz M (2019) On the search for industry-relevant regression testing re-
search. Empirical Software Engineering 24(4):2020–2055, DOI 10.1007/s10664-
018-9670-1

Anderson J, Salem S, Do H (2014) Improving the effectiveness of test suite through
mining historical data. In: 11th Working Conf. on Mining Software Repositories
(MSR), p 142–151, DOI 10.1145/2597073.2597084

Bertolino A, Guerriero A, Miranda B, Pietrantuono R, Russo S (2020) Learning-
to-rank vs ranking-to-learn: Strategies for regression testing in continuous in-
tegration. In: ACM/IEEE 42nd Int. Conf. on Software Engineering (ICSE), pp
1–12, DOI 10.1145/3377811.3380369

Brzezinski Meyer ML, Waeselynck H, Cuesta F (2023) A case study on the “jungle”
search for industry-relevant regression testing. In: 2023 IEEE 23rd International
Conference on Software Quality, Reliability, and Security (QRS), pp 382–393,
DOI 10.1109/QRS60937.2023.00045



Finding the right regression testing method: a taxonomy-based approach 37

Buchgeher G, Ernstbrunner C, Ramler R, Lusser M (2013) Towards tool-support
for test case selection in manual regression testing. In: 2013 IEEE 6th Int. Conf.
on Software Testing, Verification and Validation Workshops (ICSTW), pp 74–
79, DOI 10.1109/ICSTW.2013.16

Busjaeger B, Xie T (2016) Learning for test prioritization: an industrial case study.
In: 24th ACM SIGSOFT Int. Symp. on Foundations of Software Engineering
(FSE), pp 975–980, DOI 10.1145/2950290.2983954

Carlson R, Do H, Denton A (2011) A clustering approach to improving test case
prioritization: An industrial case study. In: 27th IEEE Int. Conf. on Software
Maintenance (ICSM), pp 382–391, DOI 10.1109/ICSM.2011.6080805

Chen S, Chen Z, Zhao Z, Xu B, Feng Y (2011) Using semi-supervised cluster-
ing to improve regression test selection techniques. In: 4th IEEE Int. Conf.
on Software Testing, Verification and Validation (ICST), pp 1–10, DOI
10.1109/ICST.2011.38

Şmite D, Wohlin C, Galviundefineda Z, Prikladnicki R (2014) An empirically
based terminology and taxonomy for global software engineering. Empiri-
cal Software Engineering 19(1):105–153, DOI 10.1007/s10664-012-9217-9, URL
https://doi.org/10.1007/s10664-012-9217-9

Devaki P, Thummalapenta S, Singhania N, Sinha S (2013) Efficient and flexible
gui test execution via test merging. In: Int. Symp. on Software Testing and
Analysis (ISSTA), pp 34–44, DOI 10.1145/2483760.2483781

Dyba T, Kitchenham BA, Jorgensen M (2005) Evidence-based software engineer-
ing for practitioners. IEEE Software 22(1):58–65, DOI 10.1109/MS.2005.6, URL
https://doi.org/10.1109/MS.2005.6

Ekelund ED, Engström E (2015) Efficient regression testing based on test history:
An industrial evaluation. In: 2015 IEEE Int. Conf. on Software Maintenance
and Evolution (ICSME), pp 449–457, DOI 10.1109/ICSM.2015.7332496

Engström E, Runeson P, Wikstrand G (2010) An empirical evaluation of regression
testing based on fix-cache recommendations. In: 3rd Int. Conf. on Software Test-
ing, Verification and Validation (ICST), pp 75–78, DOI 10.1109/ICST.2010.40

Engström E, Runeson P, Ljung A (2011) Improving regression testing transparency
and efficiency with history-based prioritization - an industrial case study. 4th
IEEE Int Conf on Software Testing, Verification and Validation (ICST) pp 367–
376

Engström E, Petersen K, Ali NB, Bjarnason E (2017) Serp-test: a
taxonomy for supporting industry—academia communication. Software
Quality Journal 25(4):1269–1305, DOI 10.1007/s11219-016-9322-x, URL
https://doi.org/10.1007/s11219-016-9322-x

Erik Strandberg P, Afzal W, Ostrand TJ, Weyuker EJ, Sundmark D (2017) Au-
tomated system-level regression test prioritization in a nutshell. IEEE Software
34(4):30–37, DOI 10.1109/MS.2017.92

Fazlalizadeh Y, Khalilian A, Abdollahi Azgomi M, Parsa S (2009) Incorporating
historical test case performance data and resource constraints into test case
prioritization. International conference on tests and proofs 5668:43–57, DOI
10.1007/978-3-642-02949-3 5

Forward A, Lethbridge TC (2008) A taxonomy of software types to facilitate search
and evidence-based software engineering. In: Proceedings of the 2008 Conference
of the Center for Advanced Studies on Collaborative Research: Meeting of Minds
(CASCON ’08), Association for Computing Machinery, New York, NY, USA,



38 Maria Laura Brzezinski Meyer et al.

DOI 10.1145/1463788.1463807, URL https://doi.org/10.1145/1463788.1463807
Gligoric M, Negara S, Legunsen O, Marinov D (2014) An empirical evaluation

and comparison of manual and automated test selection. 29th ACM/IEEE
Int Conf on Automated Software Engineering (ASE) pp 361–371, DOI
10.1145/2642937.2643019

Greca R, Miranda B, Bertolino A (2023) State of practical applicability of regres-
sion testing research: A live systematic literature review. ACM Comput Surv
55(13s), DOI 10.1145/3579851, URL https://doi.org/10.1145/3579851

Herzig K, Greiler M, Czerwonka J, Murphy B (2015) The art of testing less without
sacrificing quality. In: 37th IEEE/ACM International Conference on Software
Engineering (ICSE 2015), pp 483–493

Hirzel M, Klaeren H (2016) Graph-walk-based selective regression testing of web
applications created with google web toolkit. In: Software Engineering (work-
shops)

Huang S, Chen Y, Zhu J, Li ZJ, Tan HF (2009) An optimized change-driven regres-
sion testing selection strategy for binary java applications. In: 2009 ACM Symp.
on Applied Computing (SAC), pp 558–565, DOI 10.1145/1529282.1529403

Hwang CL, Yoon K (1981) Multiple Attribute Decision Making, 1st edn. Springer
Berlin, Heidelberg

Janjua MU (2015) Onspot system: Test impact visibility during code edits in real
software. In: 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), pp 994–997, DOI 10.1145/2786805.2804430

Jordan C, Foth P, Pretschner A, Fruth M (2022) Unreliable test infrastructures
in automotive testing setups. In: 2022 IEEE/ACM 44th Int. Conf. on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), pp 307–308, DOI
10.1145/3510457.3513069

Kandil P, Moussa S, Badr N (2016) Cluster-based test cases prioritization and
selection technique for agile regression testing. Journal of Software: Evolution
and Process 29(6), DOI 10.1002/smr.1794

Khatibsyarbini M, Isa MA, Jawawi DN, Tumeng R (2018) Test case
prioritization approaches in regression testing: A systematic litera-
ture review. Information and Software Technology 93:74–93, DOI
https://doi.org/10.1016/j.infsof.2017.08.014

Krishnamoorthi R, Mary SASA (2009) Factor oriented requirement coverage based
system test case prioritization of new and regression test cases. Inf Softw Technol
51(4):799–808, DOI https://doi.org/10.1016/j.infsof.2008.08.007

Lachmann R, Schulze S, Nieke M, Seidl C, Schaefer I (2016) System-
level test case prioritization using machine learning. In: 15th IEEE Int.
Conf. on Machine Learning and Applications (ICMLA), pp 361–368, DOI
10.1109/ICMLA.2016.0065

Le Goues C, Jaspan C, Ozkaya I, Shaw M, Stolee KT (2018) Bridging the
gap: From research to practical advice. IEEE Software 35(5):50–57, DOI
10.1109/MS.2018.3571235

Li Q, Boehm B (2013) Improving scenario testing process by adding value-based
prioritization: An industrial case study. In: Int. Conf. on Software and System
Process (ICSSP), pp 78–87

Lima JAP, Vergilio SR (2020) Test case prioritization in continuous integration en-
vironments: A systematic mapping study. Information and Software Technology
121:106268, DOI https://doi.org/10.1016/j.infsof.2020.106268



Finding the right regression testing method: a taxonomy-based approach 39

Lima JAP, Vergilio SR (2022) A multi-armed bandit approach for test case priori-
tization in continuous integration environments. IEEE Transactions on Software
Engineering 48(2):453–465, DOI 10.1109/TSE.2020.2992428

Lochau M, Lity S, Lachmann R, Schaefer I, Goltz U (2014) Delta-oriented model-
based integration testing of large-scale systems. Journal of Systems and Software
91:63–84, DOI https://doi.org/10.1016/j.jss.2013.11.1096

Mahdieh M, Mirian-Hosseinabadi SH, Etemadi K, Nosrati A, Jalali S (2020)
Incorporating fault-proneness estimations into coverage-based test case pri-
oritization methods. Information and Software Technology 121:106269, DOI
https://doi.org/10.1016/j.infsof.2020.106269

Marijan D (2015) Multi-perspective regression test prioritization for time-
constrained environments. In: 2015 IEEE Int. Conf. on Software Quality, Reli-
ability and Security (QRS), pp 157–162, DOI 10.1109/QRS.2015.31

Marijan D, Gotlieb A, Sen S (2013) Test case prioritization for continuous regres-
sion testing: An industrial case study. In: 2013 IEEE Int. Conf. on Software
Maintenance (ICSM), pp 540–543, DOI 10.1109/ICSM.2013.91

Marijan D, Gotlieb A, Liaaen M (2019) A learning algorithm for optimizing contin-
uous integration development and testing practice. Softw Pract Exp 49(2):192–
213, DOI 10.1002/spe.2661

Medhat N, Moussa SM, Badr NL, Tolba MF (2020) A framework for con-
tinuous regression and integration testing in iot systems based on deep
learning and search-based techniques. IEEE Access 8:215716–215726, DOI
10.1109/ACCESS.2020.3039931

Palma F, Abdou T, Bener A, Maidens J, Liu S (2018) An improvement to test case
failure prediction in the context of test case prioritization. In: 14th Int. Conf.
on Predictive Models and Data Analytics in Software Engineering (PROMISE),
pp 80–89, DOI 10.1145/3273934.3273944

Pan R, Bagherzadeh M, Ghaleb TA, Briand L (2022) Test case selection and
prioritization using machine learning: a systematic literature review. Empirical
Software Engineering 27(2), DOI 10.1007/s10664-021-10066-6

Pasala A, Bhowmick A (2005) An approach for test suite selection to validate
applications on deployment of cots upgrades. In: 12th Asia-Pacific Software En-
gineering Conference (APSEC’05), pp 361–364, DOI 10.1109/APSEC.2005.31

Qu X, Cohen MB, Woolf KM (2007) Combinatorial interaction regression test-
ing: A study of test case generation and prioritization. In: IEEE Int. Conf. on
Software Maintenance (ICSM), pp 255–264, DOI 10.1109/ICSM.2007.4362638

Rogstad E, Briand L (2016) Cost-effective strategies for the regression testing of
database applications: Case study and lessons learned. Journal of Systems and
Software 113:257–274, DOI https://doi.org/10.1016/j.jss.2015.12.003

Rogstad E, Briand L, Torkar R (2013) Test case selection for black-box regres-
sion testing of database applications. Information and Software Technology
55(10):1781–1795, DOI https://doi.org/10.1016/j.infsof.2013.04.004

Rothermel G, Untch R, Chu C, Harrold M (1999) Test case prioritization: an
empirical study. In: IEEE Int. Conf. on Software Maintenance (ICSM), pp 179–
188, DOI 10.1109/ICSM.1999.792604

Saha RK, Zhang L, Khurshid S, Perry DE (2015) An information retrieval ap-
proach for regression test prioritization based on program changes. In: 37th
IEEE/ACM Int. Conf. on Software Engineering (ICSE), vol 1, pp 268–279, DOI
10.1109/ICSE.2015.47



40 Maria Laura Brzezinski Meyer et al.

Sharif A, Marijan D, Liaaen M (2021) Deeporder: Deep learning for test case
prioritization in continuous integration testing. In: 2021 IEEE Int. Conf. on
Software Maintenance and Evolution (ICSME), pp 525–534

Shi T, Xiao L, Wu K (2020) Reinforcement learning based test case pri-
oritization for enhancing the security of software. In: 2020 IEEE 7th Int.
Conf. on Data Science and Advanced Analytics (DSAA), pp 663–672, DOI
10.1109/DSAA49011.2020.00076

Skoglund M, Runeson P (2005) A case study of the class firewall regres-
sion test selection technique on a large scale distributed software system.
In: Int. Symp. on Empirical Software Engineering (ISESE), pp 74–83, DOI
10.1109/ISESE.2005.1541816

Spieker H, Gotlieb A, Marijan D, Mossige M (2017) Reinforcement learning for
automatic test case prioritization and selection in continuous integration. 26th
ACM SIGSOFT Int Symp on Software Testing and Analysis (ISSTA) pp 12–22,
DOI 10.1145/3092703.3092709

Srivastava A, Thiagarajan J (2002) Effectively prioritizing tests in development
environment. In: 2002 ACM SIGSOFT Int. Symp. on Software Testing and
Analysis (ISSTA), pp 97–106, DOI 10.1145/566172.566187

Tahvili S, Afzal W, Saadatmand M, Bohlin M, Sundmark D, Larsson S (2016)
Towards earlier fault detection by value-driven prioritization of test cases using
fuzzy topsis. In: 13th Int. Conf. on Information Technology: New Generations
(ITNG 2016), pp 745–759, DOI 10.1007/978-3-319-32467-8 65

Vöst S, Wagner S (2016) Trace-based test selection to support continuous integra-
tion in the automotive industry. In: Int. Workshop on Continuous Software Evo-
lution and Delivery (CSED@ICSE), pp 34–40, DOI 10.1145/2896941.2896951

Wang S, Ali S, Gotlieb A (2013a) Minimizing test suites in software prod-
uct lines using weight-based genetic algorithms. In: 15th Annual Conf. on
Genetic and Evolutionary Computation (GECCO), pp 1493–1500, DOI
10.1145/2463372.2463545

Wang S, Gotlieb A, Ali S, Liaaen M (2013b) Automated test case selection using
feature model: An industrial case study. In: 16th Int. Conf. on Model-Driven
Engineering Languages and Systems (MODELS), pp 237–253, DOI 10.1007/978-
3-642-41533-3 15

Wang S, Buchmann D, Ali S, Gotlieb A, Pradhan D, Liaaen M (2014) Multi-
objective test prioritization in software product line testing: An industrial case
study. In: 18th Int. Software Product Line Conference (SPLC), pp 32–41, DOI
10.1145/2648511.2648515

Wang S, Ali S, Gotlieb A (2015) Cost-effective test suite minimization in
product lines using search techniques. J Syst Softw 103:370–391, DOI
https://doi.org/10.1016/j.jss.2014.08.024

Wang S, Ali S, Yue T, Bakkeli O, Liaaen M (2016) Enhancing test case prioritiza-
tion in an industrial setting with resource awareness and multi-objective search.
In: 38th IEEE/ACM Int. Conf. on Software Engineering Companion (ICSE-C),
pp 182–191

Wang S, Ali S, Gotlieb A, Liaaen M (2017) Automated product line test case
selection: industrial case study and controlled experiment. Softw Syst Model
16(2):417–441, DOI 10.1007/s10270-015-0462-4

White L, Robinson B (2004) Industrial real-time regression testing and analysis
using firewalls. In: 20th IEEE Int. Conf. on Software Maintenance (ICSM), pp



Finding the right regression testing method: a taxonomy-based approach 41

18–27, DOI 10.1109/ICSM.2004.1357786
White L, Jaber K, Robinson B, Rajlich V (2008) Extended firewall for regression

testing: an experience report. Journal of Software Maintenance and Evolution:
Research and Practice 20(6):419–433, DOI https://doi.org/10.1002/smr.371

Wikstrand G, Feldt R, Gorantla JK, Zhe W, White C (2009) Dynamic regres-
sion test selection based on a file cache an industrial evaluation. In: 2nd Int.
Conf. on Software Testing Verification and Validation (ICST), pp 299–302, DOI
10.1109/ICST.2009.42

Yoo S, Harman M (2012) Regression testing minimization, selection and prioriti-
zation: A survey. Softw Test Verif Reliab 22(2):67–120, DOI 10.1002/stv.430

Yoo S, Harman M, Tonella P, Susi A (2009) Clustering test cases to achieve
effective & scalable prioritisation incorporating expert knowledge. In: 8th
Int. Symp. on Software Testing and Analysis (ISSTA), pp 201–212, DOI
10.1145/1572272.1572296

Zheng J (2005) In regression testing selection when source code is not available.
In: 20th IEEE/ACM Int. Conf. on Automated Software Engineering (ASE’05),
pp 752–755

Zheng J, Robinson B, Williams L, Smiley K (2006a) Applying regression test
selection for cots-based applications. In: 28th Int. Conf. on Software Engineering
(ICSE ’06), pp 512–522, DOI 10.1145/1134285.1134357

Zheng J, Robinson B, Williams L, Smiley K (2006b) A lightweight process for
change identification and regression test selection in using cots components.
In: 5th Int. Conf. on Commercial-off-the-Shelf (COTS)-Based Software Systems
(ICCBSS), pp 137–143, DOI 10.1109/ICCBSS.2006.1

Zheng J, Williams L, Robinson B (2007) Pallino: Automation to support
regression test selection for cots-based applications. In: 22nd IEEE/ACM
Int. Conf. on Automated Software Engineering (ASE), pp 224–233, DOI
10.1145/1321631.1321665


