TSAI - Test Selection using Artificial Intelligence
for the Support of Continuous Integration

Maria Laura Brzezinski Meyer

2

11 AAS-CNRS, INSA, Université de Toulouse, France
2Renault Software Factory, Toulouse, France
mlbrzezins @laas.fr

Abstract—The agile methodology has been increasingly de-
ployed in the industry world, breaking the process into cycles of
planning, executing, and evaluating. In the software development
domain, an agile method named continuous integration is widely
used to automatically integrate code changes from different
developers into the same software. Then, each new build can
be tested to make sure that the modifications did not interfere
with the rest of the already verified code. Despite being very
important, regression tests are usually the costliest part of a
project. It is laborious to retest all tests of each new software
version due to the time it takes to perform and often, before all
tests are finished, a new software version is ready to be tested.
To improve regression tests results, a selection can be done. By
selecting the right tests at the right moment, the use of all test
catalogs can be avoided to find faults in the software tested. The
aim of this work is to develop a method to select tests to be
executed for each version using artificial intelligence algorithms.
Learning algorithms can find patterns and similarities between
test cases to help knowing which one has a higher probability to
expose a fault.

Index Terms—Continuous Integration, testing, regression tests,
artificial intelligence, industrial case study

I. INTRODUCTION

The traditional “V” model is being replaced by agile meth-
ods in the industries. In a “V” model process, validation is
done only at the end of development, causing faults to be
discovered late. However, in agile process, validation is done
for each new cycle, allowing faults to be exposed and repaired
earlier. The concept of doing small cycles of release — build —
test — deploy was first presented in [1] and is called continuous
integration (CI). First, one or more developers write a code,
then it is released and integrated into the main project. After
the build, it is tested and finally, the software can be deployed.
In this context, regression tests are needed to verify that new
modifications did not interfere with the rest of the code. This
project is inserted in the domain of the automotive industry,
where the process complexity is increasing. Therefore, CI is
being employed to boost the projects execution time, making
it possible to care out tests daily as new realeases are added.
Allowing faults to be found earlier and to be fixed before the
next release, this methodology improves agility and decreases
the cost of the project. Although it intends to reduce risk
[2], a problem is created because the time is limited in the
short continuous cycles, making it impossible to execute all
the tests at each interation. At Renault Software Factory, there
are two cycles of tests: a short cycle — where all the fast tests

are executed, like smoke tests — and a long cycle — where
longer and costlier tests are executed, like regression tests.
An example is showed in figure 1. The short cycle tests are
executed daily in each new version of the software. The long
cycle tests are executed weekly for one version of the software.
Each SWax represents a new version of the software being
developed.

Long Cycle

~10K tests S

High cost SWe

Swi1
Sort Cycle
~500 tests swi sw2 sSwW3 SW4 SW5 Swe sw7 sSws sSw9 SW10 SwW12

Low cost
Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri Mon Tue

Fig. 1. Long and short test cycle with overflow example.

As can be seen in Figure 1, the long cycle may take longer
than expected to be completed, which makes the process
impossible as a new cycle must start. To mitigate this issue, a
subset of the tests can be selected to be launched in each new
build. With the increasing use of artificial intelligence (AI)
methods, learning can be used to classify tests so a set can be
chosen to be executed. The purpose of this work is to choose
tests cases to form a test set to be performed daily into earlier
steps so that faults can be revealed as soon as possible. Thus,
the number of long cycles can be spaced to prevent the test
campaign from not ending after a new cycle starts. Figure 2
shows the new test set included by the selection method for
each software version (in blue) and the new spacing between
long cycles.

Overhead of test
selectionin short cycle

SW1 Long cycle removed SWi11

e [sw2 SW4 | Tsws | | SW6 | swr] [SW8 | [[swe SW11 | ['swi2

SW1 SW2 Sw3 Sw4 SW5 SW6 SWT sSws SwW9

SW10 | | SWi1 SW12

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri Mon Tue

Fig. 2. Long test cycle removed and addition of selected tests example.

Therefore, this study addresses the three following research
questions:

o RQI1: Which data is needed in the regression test selection

process and how to obtain and use it?

« RQ2: Can AI improve the testing selection process and

which algorithms can be used with the available data?

o RQ3: How to analyze the efficiency and the risks reported

by the methods?

This thesis started in March 2021 within the Renault Group
and the Laboratory for Analysis and Architecture of Systems
- French National Centre for Scientific Research (LAAS -
CNRS).

The main contributions of this work are:

o Test execution time reduction by performing smart test

selection, which decreases the testers workload and costs;

o Allows to focus on tests results analysis due to this time

saving;

o Early failure detection, which allows fixing the code in

earlier stages of the project;

o Better compatibility of agile methodologies with an in-

dustrial sector that has long cycle testing;

o Risk management of the software quality in function of

validation execution time.

The paper is structured as follows, Section II outlines the
work already done in the literature that is relevant to this thesis.
Then, Section III discuss the challenges faced in the theme,
the work timeline and milestones are explored in Section IV
and Section V concludes.

II. RELATED WORK

Yoo and Harmen [3] classified regression testing methods
into three categories: minimization, selection and prioritiza-
tion. In test suite minimization (TSM), the aim is to identify
and remove redundant test cases from a test suite in order to
reduce its size. Regression test selection (RTS) addresses the
dual problem of identifying which test cases to retain from the
test suite. The main focus is usually on the software changes,
so tests that cover modified parts of the code are selected.
The third type of methods is test case prioritization (TCP),
which neither removes nor selects tests, but assigns them an
order of execution seeking to maximize early fault exposure.
TSM, RTS and TCP can complement each other in a global
regression testing strategy. For example, test cases can be first
selected to reduce the test size and then ordered to reveal
faults earlier. Or a minimization technique can be applied
after the selection to further reduce the number of tests. Or
still, the test selection can be achieved by prioritizing the test
cases, only retaining the highest-priority ones. Conceptually,
the three categories of methods are closely related. All of them
involve some comparative characterization of each individual
test cases, based on which an optimal decision has to be taken
(e.g., which test cases to remove, retain or execute first).

A. Test Suite Minimization

From a TSM perspective, the value of the tests is typically
determined by referring to test requirements, like structural

coverage requirements. A test case can be removed if it does
not cover elements missed by the other cases. TSM then
searches for the smallest possible subset of test cases such
that it is no longer possible to remove test cases and preserve
full coverage. In a review by Singh and Santosh [4], the tech-
niques used in test case minimization are analyzed, which are:
Heuristic-based, Genetic Algorithm based approaches, Integer
Linear Programming based approaches, and Hybrid ones. The
authors conclude that it is difficult to tell which technique
has the best performance because each of them stands out
over the other in some aspect. Note also that, irrespective of
the chosen optimization technique, the effectiveness of TSM
fundamentally depends on a debatable assumption: that the
redundant cases in terms of coverage are also redundant for
finding faults. The assumption may not hold, as evidenced by
the empirical results of Rothermel et al. for code coverage [5],
and Heimdahl for model coverage [6]. This yielded Marijan
et al. [7] to revisit the notion of redundancy, in order to
consider fine-grained coverage patterns as well as the failing
history of test cases. Their work focused on feature coverage
for highly configurable software products. The fine-grained
minimization scheme distinguishes between totally redundant
test cases (the set of features covered by the test case is
included in the set covered by another test case) and partially
redundant ones (the set of covered features overlap). Only
the totally redundant cases are removed. The other ones are
assigned a priority that depends on their history of failures,
where the test cases that recently failed have a higher priority
than the ones that did not. This work is an interesting example
of a hybrid strategy combing RTS, TSM and TCP: first the
test cases that are relevant to the changed features are selected,
then totally redundant cases are removed, and finally test case
prioritization is performed to run them in order until the test
budget is exhausted.

B. Regression Test Selection

From an RTS perspective, a primary concern is to select test
cases that are impacted by a code change. Two recent examples
of tools are Ekstazi [8] and STARTS [9], respectively based on
a dynamic and static analysis approach. Ekstazi dynamically
collects the information about the files accessed by a test case
during execution. File checksum verification allows the auto-
mated detection of changes. Tests that depend on the changed
files are then selected to run. STARTS (STAtic Regression
Test Selection) uses information available at compile time to
build a dependency graph relating all classes, including the
test classes. Like in Ekstazi, the detection of changes is done
by checksum comparison and the impacted tests are selected.
Beyond these change-based approaches, some authors have
proposed to consider other selection criteria, like the similarity
of test cases or their history of failures. Chen et al. [10] group
tests into clusters based on the similarity of their execution
profile. Their selection strategy randomly samples a few tests
from each cluster. If any of the selected test fails, all tests
in this cluster are also run. Anderson et al. [11] consider the
history of failures to select tests that are likely to fail. Two

strategies are proposed. The first one simply selects tests that
recently failed. The second one is more complex, by mining
relations between test cases: failures in certain subsets of tests
are used to determine other subsets that are likely to fail as
well.

C. Test cgse Prioritization

The last category of regression testing methods, test case
prioritization, seeks the ideal order of tests cases to maximize
early fault finding. A number of TCP methods have been
proposed in the literature [12]. They differ in the (combination
of) criteria used to predict the fault finding capability of the test
cases as well in the core algorithms used to build an optimal
order. Not surprisingly, the used criteria span many concerns
also considered by TSM and RTS: structural coverage [13],
relevance to code changes [14] [15], the similarity of tests [15]
[16] [17] and their history [17] [18] [19]. The used algorithms
are mostly classical optimization ones (greedy, search-based,
integrated-linear-programming-based) but may also pertain to
information retrieval (IR) and machine learning (ML) [12].

D. Artificial Intelligence

Indeed, techniques from data science and artificial intelli-
gence are attracting a growing interest in the framework of
regression testing methods. IR techniques are used to identify
the tests impacted by a code change [14]. Clustering allows the
identification of similar tests [10] [15]. It may be preceded by
a pre-processing of the data for dimensionality reduction [10].
Many ML algorithms have been studied to support decision
in regression testing. For example, Busjaeger et al. [20] use a
Support Vector Machine method (SVM-map) to learn how to
best combine five criteria for test case prioritization. Marijan
et al. [7] use C4.5 to predict the effectiveness of test cases
from test historical records. Spieker et al. [19] experiment
with adaptive TCP strategies based on online reinforcement
learning. Lachman [21] compares four machine learning al-
gorithms: software vector machine rank (SVM rank), neural
networks, K-nearest neighbor (KNN) and logistic regression.
Besides, the author also proposes an ensemble algorithm to
combine the four others. From their experiments, logistic
regression has the best performance for test case prioritization.
An interesting result is also that the features extracted from
the test case descriptions — using natural language processing
techniques — play a relevant role in the decision: the ML
algorithms work better with than without them.

My PhD topic fits into this growing body of research,
which investigates Al-based regression testing. While many
approaches are being developed, there is no consensus on
the combination of features to consider and the learning
algorithms to use. My research will tackle the problem with the
aim to provide a solution that is well suited for the industrial
context at Renault Software Factory.

III. CHALLENGES

In this section, the challenges of the Research Questions are
reviewed and discussed.

A. Test Regression Data (RQI1)

As seen in Section II, there are three approaches in regres-
sion testing: minimization, selection or prioritization. In each
work analyzed, some points are taken into account as selection
criteria, such as test execution time, code coverage, test cost,
executions history, test age, among others. Therefore, these
three methods rely on having testing data to be able to reduce,
select or prioritize test cases. To know which data to collect
and how to have access to it is a challenge, because not all
information is available. Besides that, data is heterogeneous,
so it need to be careful analyzed and mined. Thus, another
challenge is the data mining, so the right information is
considered in the regression test algorithm. It also raises two
other questions: how to extract the features - like test age, test
level, tests results, test complexity, among others - to be used
from the available data? And which ones are more important
for choosing a test over another?

B. Artificial intelligence and test selection (RQ2)

As remarked in section II, Al is been implemented to
select, prioritize or minimize tests cases. Al algorithms are
very useful to find patterns and to classify data, however a
lot of data is required to do so. Knowing how much data
to use, which type of data is required and what features
are the most important for Al processing is a big challenge.
Another challenge is to know which algorithm performs better
than others in the context considered. There is a comparison
between methods in the literature [21] [22], but how to know
which is more adapted to the automotive context of Renault
Software Factory? Which AI algorithm is more adopted to
the available data? Besides that, the timing is critical, it is
significant to consider the time for Al to select the tests to run
in a CI cycle since each cycle is short. So, the introduction of
Al into a CI process needs to be carefully studied.

C. Efficacy of the methods (RQ3)

To verify the effectiveness of an algorithm, it is necessary
to compare it with others to find which ones can improve
the final result. RQ3 faces the challenge of how to evaluate
these regression test selection algorithms and how to compare
them. The use of Al makes the algorithm random, resulting
in a complexity and high variance probability distribution,
thus some statistical tests may be inadequate to analyze the
performance of Al algorithms because they are usually based
in the assumption of a normal distribution [23]. It may be
necessary to adapt tests and evaluation methods to this context.
It is also important to know how many experiments are needed
and how they can be reliable and true to the CI reality. Besides
that, the risk also needs to be measured, because maybe the
time can be reduced, but it might increase the risk of not
founding the faults presents in the software. Thereby, how the
risk of not reveling the faults can be measured?

IV. WORK PLAN

This research work is in its beginning at the moment of
writing. The three-year schedule of this thesis can be described
as follow:

15t year:

« Bibliographical study on software testing in general, the
system integration test including “risk management”, as
well as the existing regression test methods in a context
of continuous integration.

« Test data collection, that includes test cases specifications,
tests executions and bugs description.

o Analyses of the data features for identifying the set of
relevant metrics for selection testing procedure.

o Setting up of the infrastructure to create a test plan,
execute it, and take its results.

2" year:

o Improvement of the data mining study.

o Study and implementation of Al algorithms, as well as
determination of scenarios for using the learning algo-
rithms in the decision process.

374 year:

o Execution of tests selection methods controlled experi-
ences to evaluate each algorithm.

o Study and implementation of evaluation methods.

« Finalization of experiences and writing of the manuscript.

V. CONCLUSION

The increased use of technologies and the evolution of the
industry bring challenges to be explored and overcome. For
software testing, the use of continuous integration method-
ology makes it possible to test each new version of the
code daily. However, the implementation of sort cycles of
development-validation-deploy restricts the number of tests to
be executed to validate the current version. Selecting the right
tests to be executed for each version becomes a challenge wide
explored over the years. Furthermore, with the growing wave
of the use of artificial intelligence in the technological world,
new approaches are been developed.

This work aims to study the use of Al algorithms in the
process of selecting test cases to be executed. The expected
contribution of this thesis is an algorithm able to take infor-
mation about test cases and the software under test, process
these inputs using learning algorithms to have a list of tests to
be executed in the output. Besides that, after the automatic
execution of the tests, all the new information about test
executions will feedback the algorithm.

ACKNOWLEDGMENT

This project has received funding from Renault Group. The
author would like to thank the director Hélene Waeselynck
from LAAS and the industrial advisor Fernand Cuesta for their
guidance during the first months of this PhD.

REFERENCES

[11 G. Booch, Object-Oriented Analysis and Design with Applications (3rd
Edition). USA: Addison Wesley Longman Publishing Co., Inc., 2004.

[2] M. Fowler, “Continuous integration,” May 2006. [Online]. Available:
https://www.martinfowler.com/articles/continuousIntegration.html

[3] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Softw. Test. Verif. Reliab., vol. 22, no. 2, p.
67-120, Mar. 2012. [Online]. Available: https://doi.org/10.1002/stv.430

[4]
[5]

[6]

[7]

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

R. Singh and M. Santosh, “Test case minimization techniques : A
review,” IJERT, vol. 2, pp. 1048-1056, 12 2013.

G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical
studies of test-suite reduction,” Software Testing, Verification and
Reliability, vol. 12, no. 4, pp. 219-249, 2002. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.256

M. P. E. Heimdahl and D. George, “Test-suite reduction for model
based tests: Effects on test quality and implications for testing,” in
Proceedings of the 19th IEEE International Conference on Automated
Software Engineering, ser. ASE *04. USA: IEEE Computer Society,
2004, p. 176-185.

D. Marijan, A. Gotlieb, and M. Liaaen, “A learning
algorithm for optimizing continuous integration development
and testing practice,” Software: Practice and Experience,
vol. 49, no. 2, pp. 192-213, 2019. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2661

M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” 07 2015, pp. 211-222.

O. Legunsen, A. Shi, and D. Marinov, “Starts: Static regression test
selection,” in 2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 2017, pp. 949-954.

S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, “Using semi-supervised
clustering to improve regression test selection techniques,” in 2011
Fourth IEEE International Conference on Software Testing, Verification
and Validation, 2011, pp. 1-10.

J. Anderson, S. Salem, and H. Do, “Improving the effectiveness of
test suite through mining historical data,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
142-151. [Online]. Available: https://doi.org/10.1145/2597073.2597084
Y. Lou, J. Chen, L. Zhang, and D. Hao, “Chapter one - a survey on
regression test-case prioritization,” ser. Advances in Computers, A. M.
Memon, Ed. Elsevier, 2019, vol. 113, pp. 1-46. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0065245818300615
G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritizing test cases
for regression testing,” IEEE Transactions on Software Engineering,
vol. 27, no. 10, pp. 929-948, 2001.

R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information
retrieval approach for regression test prioritization based on program
changes,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1, 2015, pp. 268-279.

R. Haraty, N. Mansour, L. Moukahal, and I. Khalil, “Regression test
cases prioritization using clustering and code change relevance,” Inter-
national Journal of Software Engineering and Knowledge Engineering,
vol. 26, pp. 733-768, 06 2016.

C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case
prioritization using ordered sequences of program entities,” Software
Quality Journal, vol. 22, 06 2014.

T. B. Noor and H. Hemmati, “A similarity-based approach for test
case prioritization using historical failure data,” in 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE),
2015, pp. 58-68.

Y. Fazlalizadeh, A. Khalilian, M. Abdollahi Azgomi, and S. Parsa, “In-
corporating historical test case performance data and resource constraints
into test case prioritization,” vol. 5668, 07 2009, pp. 43-57.

H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, ‘“Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2017. New
York, NY, USA: Association for Computing Machinery, 2017, p.
12-22. [Online]. Available: https://doi.org/10.1145/3092703.3092709
B. Busjaeger and T. Xie, “Learning for test prioritization: an industrial
case study,” 11 2016, pp. 975-980.

R. Lachmann, “12.4 - machine learning-driven test case prioritization
approaches for black-box software testing,” 01 2018, pp. 300-309.

K. Bhatnagar, “Regression test case selection us-
ing machine learning,” March 2020. [Online].
Available: https://medium.com/analytics-vidhya/regression-test-case-

selection-using-machine-learning-241ded86£559

A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, vol. 24, 2014.

